Project description:Pomegranate exhibits pronounced hypolipidemic properties, and the objective of this study was to delineate the precise mechanism by which pomegranate facilitates the treatment of hyperlipidemia.SD rats were fed with a high fat diet (HFD) to establish an hyperlipidemia model and intervened with pomegranate .Pomegranate significantly lowered body weight gain , liver weight and adipose tissue coefficient, and attenuated the hepatic steatosis.Serum concentrations of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) were markedly reduced, concomitant with a significant elevation in high-density lipoprotein cholesterol (HDL-C) levels. Metabolomic analysis revealed that pomegranate treatment significantly modulated 37 metabolites linked to hyperlipidemia, with the primary pathways affected encompassing sphingolipid metabolism, pyrimidine metabolism, and arachidonic acid metabolism. Transcriptomic profiling identified 439 genes differentially expressed following pomegranate treatment, which were associated with various lipid-related and inflammatory pathways, predominantly including the lipid and atherosclerosis signaling pathway, NF-κB signaling pathway, and TNF signaling pathway.
Project description:The most relevant pomegranate phenolics (ellagitannins and ellagic acid) are extensively metabolized by the human gut microbiota to yield a number of metabolites called urolithins (mainly Uro-A). Urolithins have been reported to regulate in vivo the expression of genes involved in inflammation and cancer. Our hypothesis is that urolithins can be detected in the human colon mucosa where these metabolites can exert anti-inflammatory and anti-cancer activities. After colonoscopy and diagnosis, colorectal cancer patients will consume capsules containing three different pomegranate extract formulations until surgery. The aims of this trial are:
* To evaluate the disposition of pomegranate phenolics and urolithins in tumoral and normal colon tissues.
* To evaluate gene expression profiling and protein markers in tumoral and normal colon tissues from these patients.
* To compare different pomegranate extract formulations on the above.
| 2149595 | ecrin-mdr-crc
Project description:Sequencing of different olive varieties for phenolic compound studies.
Project description:We combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development during two fruit development stages in the ‘Tunisia’ and ‘White’ pomegranate cultivars.
Project description:Pomegranate (Punica granatum L.) is sensitive to drought stress, which largely affects its transplantation survival rate, fruit yield and quality. Abscisic acid (ABA) treatment can reduce the drought-induced adverse impacts on plants. However, no studies have ever applied ABA as an exogenous supply to alleviate the drought stress on pomegranates. In this study, we performed comparative transcriptome analysis between the ABA-treated and untreated pomegranates to reveal the ABA-induced mechanisms in response to drought-stress. Our results showed that exogenous ABA application substantially enhanced pomegranate drought resistance by strengthening metabolic pathways, such as BRs synthesis, peroxisome biogenesis, photosynthesis and hemicelluloses synthesis. Furthermore, treatments with different ABA concentrations may provoke different transcriptional responses and, once the concentration exceeds the optimal (60 μM), it might induce some potential adverse impacts on plant growth and stress resistance.
Project description:Plant-derived secondary metabolites found in animal feed sources are beneficial for nutrition and health. Cowpea is a protein and phenolic-rich forage used as feed resource in animal system. The objective of this study was to understand the effect of cowpea secondary metabolites on gene expression in cows blood in vitro. Whole blood collected from Holstein Friesian cows (n=5) were treated with 10 ug/ml of cowpea leaf phenolic extract and untreated samples served as control. Total RNA was isolated and pooled together for microarray analysis. The Agilent one color bovine (v2) 4x44KÂ array was used and preliminary gene expression profiles generated using Cy3 labeled cDNA from CPE-stimulated and untreated samples. Gene expression analysis revealed a total of 3170 differentially expressed genes- 1716 up regulated and 1454 down regulated genes respectively. Pathway analysis identified CPE treatment association with innate immune response pathways including Toll-like receptor (TLR) signaling pathway, the Wnt signaling pathway, inflammation response pathway, and increased expression of the transcription factor NFKB1 were observed. Treatment with CPE decreased the expression of proinflammatory cytokines IL1A, IL1B and IL21. Quantitative real time PCR was performed to validate some gene members of the Toll-like receptor, inflammation response and Wnt signaling pathways. In vitro treatment with CPE impacted global gene expression profile in cow blood and results obtained in this study shows the potential immuno-modulatory properties of cowpea feed phenolic in cows. The global gene expression of the effect of cowpea phenolic extract (CPE) was measured in bovine peripheral blood.The experiment involved two groups; cowpea phenolic extract (CPE) treated samples vs untreated control group. Pooled RNA samples from each group was hybridized on Agilent one color bovine (v2) 4x44KÂ microarray slides. Two slides were prepared each with 4 array compartment.
Project description:Grapevine (Vitis vinifera L) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices, defined as terroir, which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.
Project description:This project intends to conduct comparative proteomics research on wild and cultivated varieties of Dendrobium huoshanense that are similar in plant shape and in the same growth and development stage through proteomics and protein modification omics combined with the differences in metabolites in Dendrobium huoshanense. Full-scan proteomic data of Dendrobium; compare the protein expression levels of wild and cultivated varieties to find relevant candidate proteins, and perform functional annotation and KEGG analysis of metabolic pathways for candidate proteins with different expressions to further analyze the material basis differences between wild and cultivated varieties Provide research objects of molecular biology.