Project description:affy_mildew_sunflower - A quantitative resistance of sunflower to downy mildew (Plasmopara halstedii) has been mapped on LG10 (Vear et al., 2008). Is this quantitative resistance involving novel biological mechanisms? Compare the pattern of expression of specific resistances harboured by the Pl5/Pl2 alleles and the quantitative resistance harboured by the favourable allele at the mapped QTL, during compatible and incompatible interactions in the pathosystem Helianthus annuus / Plasmopara halstedii 60 arrays - SUNFLOWER; normal vs disease comparison
Project description:affy_mildew_sunflower - A quantitative resistance of sunflower to downy mildew (Plasmopara halstedii) has been mapped on LG10 (Vear et al., 2008). Is this quantitative resistance involving novel biological mechanisms? Compare the pattern of expression of specific resistances harboured by the Pl5/Pl2 alleles and the quantitative resistance harboured by the favourable allele at the mapped QTL, during compatible and incompatible interactions in the pathosystem Helianthus annuus / Plasmopara halstedii
Project description:Background: Respiratory allergy triggered by pollen allergens is increasing at an alarming rate worldwide. Sunflower pollen is thought to be an important source of inhalant allergens. Present study aims to identify the prevalence of sunflower pollinosis among the Indian allergic population and characterizes the pollen allergens using immuno-proteomic tools. Methodology: Clinico-immunological tests were performed to understand the prevalence of sensitivity towards sunflower pollen among the atopic population. Sera from selected sunflower positive patients were used as probe to detect the IgE-reactive proteins from the one and two dimensionally separated proteome of sunflower pollen. The antigenic nature of the sugar moiety of the glycoprotein allergens was studied by meta-periodate modification of IgE-immunoblot. Finally, these allergens were identified by mass-spectrometry (MALDI TOF/TOF and LC ESI qTOF). MASCOT searching was performed against NCBInr database. However, Helianthus annuus genome is not fully sequenced and partially annotated. So in case of low confidence (p> 0.05) protein identification, searching was performed against EST library of Helianthus annuus. Results: Prevalence of sunflower pollen allergy was observed among 21% of the atopic population and associated with elevated level of specific IgE and histamine in the sera of these patients. Immunoscreening of sunflower pollen proteome with patient serum detected seven IgE-reactive proteins with varying molecular weight and pI. Hierarchical clustering of 2D-immunoblot data highlighted three allergens characterized by a more frequent immuno-reactivity and increased levels of IgE antibodies in the sera of susceptible patients. These allergens were considered as the major allergens of sunflower pollen and were found to have their glycan moiety critical for inducing IgE response. Homology driven search of MS/MS data of these IgE-reactive proteins identified seven previously unreported allergens from sunflower pollen. Three major allergenic proteins were identified as two non-isoformic pectate lyases and a cystein protease. Conclusion: Novelty of the present report is the identification of a panel of seven sunflower pollen allergens for the first time at immuno-biochemical and proteomic level, which substantiated the clinical evidence of sunflower allergy. Further purification and recombinant expression of these allergens will improve component-resolved diagnosis and therapy of pollen allergy.
Project description:We describe the design, cleaning and annotation of the gene index for sunflower and the construction of the microarray platform. In addition, we validate this tool by means of the analysis of global changes in gene expression profiles in response to water deficit as a physiological event which induces senescence, taken as a model experiment, for which reference genes have also been identified and validated (Fernandez et al., 2011). Our results show that Helianthus annuus L. microarray is suitable for a functional genomics approach across many different possible treatments and conditions to be carried out. Actually, it is already being used for other experiments showing a precise and accurate level of trustability along different gene expression profiles.
Project description:The soilborne fungus, Verticillium dahliae, causes Verticillium wilt disease in plants. Verticillium wilt is difficult to control since V. dahliae is capable of persisting in the soil for 10 to15 years as melanized microsclerotia, rendering crop rotation strategies for disease control ineffective. Microsclerotia of V. dahliae overwinter and germinate to produce infectious hyphae that give rise to primary infections. Consequentially, microsclerotia formation, maintenance, and germination are critically important processes in the disease cycle of V. dahliae.
Project description:<p>Sunflower pollen is a natural nutritious food with a long history and multiple functions, however, the main chemical components apart from flavonoids and their biosynthesis processes have not been thoroughly investigated. In this study, seven hydroxycinnamic acid amides (HCAAs) (1-7) abundant in sunflower pollen were isolated and identified as one type of the pollen's main chemicals. For a comprehensive understanding of HCAA biosynthesis in <em>Helianthus annuus</em> flowers, RNA-seq, metabolomics, and key genes related to biosynthesis in the sunflower were studied. A large number of compounds at different sunflower growth stages (the 7th, 14th, 21st and 28th days) and high expression levels of related genes in the transcriptome were detected. A molecular network was constructed to clarify the synthetic pathway of HCAAs, which revealed high transcriptional levels of spermidine hydroxycinnamoyl transferase genes (<em>HaSHT2795</em> and <em>HaSHT2436</em>) in 14-21 day-old flowers. <em>HaSHT2795</em> enzymes catalyze tri-coumaroylspermidine formation, and virus-induced gene silencing to inhibit <em>HaSHT2795</em> and <em>HaSHT2436</em> could significantly reduce the synthesis of hydroxycinnamic acid amides in sunflower pollen. HCAAs were inferred to be related to the formation of pollen walls and the health effects of pollen. Analyzing HCAA biosynthesis and accumulation in <em>H. annuus</em> pollen will be helpful to understand the functions of HCAAs in the development of pollen and its nutritional value.</p>
Project description:Cotton is the main source of natural fiber in the textile industry, making it one of the most economically important fiber crops in the world. Verticillium wilt, caused by the pathogenic fungus Verticillium dahlia, is one of the most damaging biotic factors limiting cotton production. Mechanistic details of cotton defense responses to verticillium wilt remain unclear. In this study, GFP-labeled strain of V. dahlia was used to track colonization in cotton roots, and clear conidial germination could be observed at 48 hours post-inoculation (hpi), marking this as a crucial time point during infection. Transcriptome analysis identified 1,523 and 8,270 differentially expressed genes (DEGs) at 24 hpi and 48 hpi, respectively. Metabolomic screening found 78 differentially accumulated metabolites (DAMs) at 48 hpi. Conjoint analysis indicated that the phenylpropanoid biosynthesis pathway was activated in cotton infected with V. dahliae. The five metabolites in the phenylpropanoid biosynthesis pathway, including caffeic acid, coniferyl alcohol, coniferin, scopoletin and scopolin, could significantly inhibit V. dahlia growth in vitro, implicating their roles in cotton resistance to Verticillium wilt. The findings expand our understanding of molecular mechanisms underlying the pathogen defense response against V. dahlia infection in upland cotton, which may lead to future insights into controlling Verticillium wilt disease.
Project description:Cultivated olive tree (Olea europaea L. subsp. europaea var. europaea) is one of most relevant worldwide-extended crops. Since this plant has a huge effect on the economy of several regions, especially in those located in the Mediterranean basin, all efforts focused on its protection have a great relevance in agriculture sustainability. As all extended crops, olive tree cultivars are under the threat of a wide range of pathogens. Among them, Verticillium dahliae has been in the spotlight in the last decades because the disease caused by this soil-borne fungus (Verticillium wilt) is easily spread and can eventually kill the tree. In this line, many different factors have been studied in order to shed some light on the molecular/genetic mechanisms underlying the Olea europaea-Verticillium dahliae interaction, some of them focused on the gene expression pattern of the host. In this study, the expression pattern of roots from thirty-six O. europaea cultivars with different resistance/susceptibility degree to Verticillium wilt has been analyzed by RNA-Seq. As a result, processes involved in plant defense, transcription and root development have emerged as potential players in the differential response to Verticillium wilt of these cultivars. Additionally, a quite interesting set of 421 genes with an opposite expression pattern in those cultivars showing extreme resistance/susceptibility to Verticillium wilt has been discovered, establishing a solid group of candidates to take into account in future genetic improvement programs.