Project description:Exosomes and microvesicles (i.e., extracellular vesicles; EVs) have been identified within ovarian follicular fluid, and recent evidence suggests that EVs are able to elicit profound effects on ovarian cell function. While existence of miRNA within EVs has been reported, it remains unknown if EV size and concentration as well as their cargos (i.e., proteins and RNA) change during antral follicle growth. Extracellular vesicles isolated from follicular fluid of small, medium and large bovine follicles were similar in size, while concentration of EVs decreased progressively as follicle size increased. Electron microscopy indicated a highly purified population of the lipid bilayer enclosed vesicles that were enriched in exosome biomarkers including CD81 and Alix. Small RNA sequencing identified a large number of known and novel miRNAs that changed in the EVs of different size follicles. Ingenuity Pathway Analysis (IPA) indicated that miRNA abundant in small follicle EV preparations were associated with cell proliferation pathways, while those miRNA abundant in large follicle preparations were related to inflammatory response pathways. These studies are the first to demonstrate that EVs change in their levels and makeup during antral follicle development and point to the potential for a unique vesicle-mediated cell-to-cell communication network within the ovarian follicle. Examination of small RNA population in bovine follicular fluid extracellular vesicles isolated from antral follicles
Project description:Ovarian clear cell carcinomas (OCCs) arise from endometriotic cysts that many women develop. Because the prognosis for OCC is poor, there is a need to identify biomarkers for early detection of OCC. Extracellular vesicles have attracted attention as biomarker carriers. This study aimed to identify cancer-specific miRNAs as novel OCC biomarkers using tissue-exudative extracellular vesicles (Te-EVs). Te-EVs were collected from patients with OCC on one side and a normal ovary on the other side. RNA sequencing was performed to identify cancerspecific miRNAs in Te-EVs. We identified tissue-specific miRNAs in the EVs secreted by OCC tissues. These EV miRNAs can be used as biomarkers for the early diagnosis and detection of OCC.
Project description:Under physiological conditions, extracellular vesicles (EVs) are present simultaneously in the extracellular compartment together with cytokines. Thus, we hypothesized that EVs in combination with cytokines induce different responses of monocyte cells compared to EVs or cytokines alone. Human monocyte U937 cells were incubated with EV-containing or EV-free CCRF human T-cell supernatant, with or without the addition of TNF. U937 cells cultured in EV-free supernatant, supernatant containing CCRF t-cell derived EVs, TNF or both. Each treatment option was measured in 3 replicates.
Project description:Differences in the levels of miRNAs in extracellular vesicles (EVs) between multiple sclerosis (MS) patients and healthy individuals were detected by means of microarray analysis.
Project description:Crude extracellular vesicles (EVs) from eight healthy volunteers were separated into 6 fractions based on their densities by using the iodixanol-based density gradient centrifugation method. To determine the distribution of miRNAs among these fractions, quantities of 93 miRNAs were quantified by the TaqMan real time PCR method using the BioMark HD system (Fluidigm) equipped with 96.96 dynamic array (Fluidigm). Six samples were fractionated from a crude EVs by density gradient centrifugation. Total of 48 samples were prepared from 8 healthy volunteers. Technical replicate of 4 gave 8 x 6 x 4 x 93 = 17,856 data. As control Tris-HCl EDTA buffer (TE) was used.
Project description:EGCG, one of the major catechins in green tea, exerts an antifibrotic property, although its mechanism remains unclear. Recently, it has been reported that microRNA (miRNA) transported by extracellular vesicles (EVs) from vascular endothelial cells (VECs) are involved in PF. In this study, we assessed the effects of EGCG on miRNAs’ expression in EVs derived from HUVECs.
Project description:Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. We find that extracellular vesicles (EVs) released from aged bone matrix (AB-EVs) during bone resorption favor adipogenesis rather than osteogenesis of BMSCs and augment calcification of vascular smooth muscle cells (VSMCs). Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. To explore the involvement of miRNAs in the AB-EVs-induced promotion of adipocyte formation and vascular calcification, the Agilent miRNA array was conducted to compare the miRNA expression profiles in AB-EVs and YB-EVs from mouse bone specimens. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring functional miRNAs.
Project description:To further investigate the molecular mechanisms by which EVs mediated the abnormal localization of tight junction proteins and adherence junction protein, we performed miRNA microarray analysis of extracellular vesicles isolated from breast cancer cells. miRNA expression in extracellular vesicles was collected from MDA-MB-231-D3H1, MDA-MB-231-D3H2LN, BMD2a and BMD2b breast cancer cell lines.