Project description:Primary cilia have been considered tumor-suppressing organelles in cholangiocarcinoma (CCA), though the mechanisms behind their protective role are not fully understood. This study investigates how the loss of primary cilia affects DNA damage response (DDR) and DNA repair processes. Human cholangiocyte cell lines were used to examine the colocalization of DNA repair proteins at the cilia and assess the impact of experimental deciliation on DNA repair pathways. Deciliation was induced using shRNA knockdown or CRISPR knockout of IFT20, IFT88, or KIF3A, followed by exposure to the genotoxic agents cisplatin, methyl methanesulfonate (MMS), or irradiation. Cell survival, cell cycle progression, and apoptosis rates were evaluated, and DNA damage was assessed using comet assays and γH2AX quantification. An in vivo liver-specific IFT88 knockout model, generated using Albumin-Cre/Lox recombination, was used to study the loss of primary cilia in the liver. Results showed that RAD51 localized predominantly at the base of the cilium, while ATR, PARP1, CHK1, and CHK2 were also detected within the ciliary shaft. Deciliated cells displayed dysregulation in critical DNA repair pathways. These cells also showed reduced survival and increased S-phase arrest after genotoxic challenges as compared to ciliated cells. Enhanced DNA damage was observed via increased γH2AX signals and comet assay results. An increase in γH2AX expression was also observed in our in vivo model, indicating elevated DNA damage. Additionally, key DDR proteins such as ATM, p53, and p21, were downregulated in deciliated cells after irradiation. This study underscores the crucial role of primary cilia in regulating DNA repair and suggests that targeting cilia-related mechanisms could present a novel therapeutic approach for CCA.
Project description:1,2-dichloropropane (1,2-DCP), a synthetic organic solvent, has been implicated in causality of cholangiocarcinoma. 1,2-DCP from Group 3 to Group 1. 1,2-DCP-induced occupational cholangiocarcinoma show a different carcinogenic process compared to common cholangiocarcinoma. However, the mechanism of 1,2-DCP induced carcinogenicity in cholangiocytes remains elusive. We reported previously that exposure of MMNK-1 cholangiocytes co-cultured with THP-1 macrophages, but not monocultured MMNK-1 cholangiocytes to 1,2-DCP induced activation-induced cytidine deaminase (AID) expression, DNA damage and ROS production. The aim of this study was to identify relevant biological processes or target genes expressed in response to 1,2-DCP, using an in vitro system where cholangiocytes are co-cultured with macrophages. The co-cultured cells were exposed to 1,2-DCP at 0, 0.1, and 0.4 mM for 24 hours and the cell lysates, assessed by transcriptome analysis. 1,2-DCP upregulated the expression of base excision repair genes in MMNK-1 cholangiocytes in the co-cultures, whereas it upregulated the expression of cell cycle-related genes in THP-1 macrophages. Activation of the base excision repair pathway might result from the previously observed DNA damage in MMNK-1 cholangiocytes co-cultured with THP-1 macrophages. Cross talk interactions between cholangiocytes and macrophages could explain the observed increase in DNA damage in the cholangiocytes.
Project description:Creatine kinase (CK) is an essential metabolic enzyme mediating creatine/phosphocreatine interconversion and shuttle to replenish ATP for energy needs. Ablation of CK causes deficiency in energy supply that eventually results in reduced muscle burst activity and neurological disorders in mice. Besides the well-established role of CK in energy-buffering, the mechanism underlying non-metabolic function of CK is poorly understood. Here we demonstrate that creatine kinase brain-type (CKB) may function as a protein kinase to regulate BCAR1 Y327 phosphorylation that enhances the association between BCAR1 and RBBP4. Then the complex of BCAR1 and RPPB4 binds to the promoter region of DNA damage repair gene RAD51 and activates its transcription by modulating histone H4K16 acetylation to ultimately promote DNA damage repair. These findings reveal the possible role of CKB independently of its metabolic function and depict the potential pathway of CKB-BCAR1-RBBP4 operating in DNA damage repair.
Project description:Background: Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting cilia length must exceed the 6 -7 μm airway surface fluid depth to generate force in the mucus layer, we hypothesized cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers. Methodology/Principal Findings: Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples brushed from human airway epithelium via fiberoptic bronchoscopy. In 28 endobronchial biopsies, healthy smoker cilia length was reduced 15% compared to nonsmokers (p<0.05). In 47 air-dried samples of airway epithelial cells, smoker cilia length was reduced 13% compared to nonsmokers (p<0.0001). Analysis of the length of individual, detached cilia in 17 samples, smoker cilia length was reduced 9% compared to nonsmokers (p<0.05). Finally, in 16 fully hydrated, unfixed samples, smoker cilia length was reduced 7% compared to nonsmokers (p<0.05). Conclusions/significance: Models predict that a reduction in cilia length would reduce mucociliary clearance, suggesting that smoking-associated shorter airway epithelial cilia plays a significant role in the pathogenesis of smoking-induced lung disease.
Project description:Biliary complications are disabling conditions that arise in up to 25% of liver transplanted patients, resulting in additional surgical procedures, re-transplantation or, in the absence of a suitable regraft, death. Here, we investigate the role of the primary cilia, a highly-specialised sensory organelle, in biliary injury leading to biliary complications. Human biopsies were used to study the structure and function of primary cilia in liver transplant recipients that develop biliary complications (N=7), compared to successful transplants (N=12). To study the biological effects of the primary cilia during transplantation, we used murine models that recapitulate liver procurement and cold storage conditions, and the K19CreERT Kif3a flox/flox mouse model to conditionally eliminate primary cilia in cholangiocytes. Microarray and RNA-seq analysis were used to study these biological effects at the transcriptional level. To explore the molecular mechanisms responsible for the observed phenotypes, we used in vitro models of ischemia, cellular senescence and primary cilia ablation. Pharmacological and genetic approaches were used to target cellular senescence and the primary cilia, in mouse models and human donor livers. Prolonged ischemic periods pre-transplantation result in ciliary shortening and cellular senescence. Primary cilia damage results in biliary injury and a loss of regenerative potential. Initiation of senescence negatively primary cilia structure, establishing a negative feedback loop that further impairs regeneration. We conclude that primary cilia play an essential role in biliary regeneration; we demonstrate that senolytics and cilia-stabilising treatments provide a potential therapeutic opportunity to reduce the rate of biliary complications and improve the outcome of the liver transplanted patient.
Project description:Epithelial cells subjected to low levels of irradiation can induce DNA damage response and senescence through variety of mechanisms. We perfomed ChIP-seq for H3K27ac to investigate the gene pathways activated to induce senescence in cholangiocytes.
Project description:Background: Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting cilia length must exceed the 6 -7 μm airway surface fluid depth to generate force in the mucus layer, we hypothesized cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers. Methodology/Principal Findings: Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples brushed from human airway epithelium via fiberoptic bronchoscopy. In 28 endobronchial biopsies, healthy smoker cilia length was reduced 15% compared to nonsmokers (p<0.05). In 47 air-dried samples of airway epithelial cells, smoker cilia length was reduced 13% compared to nonsmokers (p<0.0001). Analysis of the length of individual, detached cilia in 17 samples, smoker cilia length was reduced 9% compared to nonsmokers (p<0.05). Finally, in 16 fully hydrated, unfixed samples, smoker cilia length was reduced 7% compared to nonsmokers (p<0.05).
Project description:DNA damage results in the activation of checkpoint kinases, which phosphorylate downstream effectors that inhibit the cell cycle, activate DNA repair, and cause widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs) are not well understood. Here, we introduce a strategy for mapping regulatory networks between kinases and TFs involving integration of kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics. We use this approach to investigate the role of the Saccharomyces cerevisiae checkpoint kinases (Mec1, Tel1, Chk1, Rad53, and Dun1) in the transcriptional response to DNA damage caused by methyl methanesulfonate (MMS). The result is a global kinase-TF regulatory network in which Mec1 and Tel1 signal through Rad53 to synergistically regulate the expression of more than 600 genes. This network implicates at least nine TFs, including Msn4, Gcn4, SBF (Swi4/Swi6), MBF (Swi6/Mbp1), and Fkh2/Ndd1/Mcm1, nearly all of which have sites of Rad53-dependent phosphorylation, as downstream regulators of checkpoint kinase-dependent genes. We also identify a major DNA damage-induced transcriptional network acting independently of Rad53 and other checkpoint kinases to regulate expression of genes involved in general and oxidative stress responses. Expression was profiled with and without MMS treatment in several genetic backgrounds (gene deletion strains).
Project description:UV-induced DNA lesions are an important contributor to mutagenesis and cancer, but it is not fully understood how the chromosomal landscape influences UV lesion formation and repair. We have used a novel high-throughput sequencing method to precisely map UV-induced cyclobutane pyrimidine dimers (CPDs) at nucleotide resolution throughout the yeast genome. Analysis of CPD formation reveals that nucleosomal DNA having an inward rotational setting is protected from CPD lesions. In strongly positioned nucleosomes, this nucleosome 'photofootprint' overrides intrinsic dipyrimidine sequence preferences for CPD formation. CPD formation is also inhibited by DNA-bound transcription factors, in effect protecting important DNA elements from UV damage. Analysis of CPD repair revealed a clear signature of efficient transcription-coupled nucleotide excision repair. Repair was less efficient at translational positions near a nucleosome dyad and at heterochromatic regions in the yeast genome. These findings define the roles of nucleosomes and transcription factors in UV damage formation and repair. UV mapping data was analyzed for yeast cells irradiated with 125J/m2 and allowed to repair for 0hr (2 samples), 20 minutes, 1 hour, or 2 hours. Data is also included for naked DNA irradiated with UV 60 or 90 J/m2