Project description:We investigated epidermis derived fibroblasts in neonatal skin at single cell-transcriptomic levels. We found that keratin 5 lineage mesenchymal cells mainly showed the transcriptomic signatures as dermal papilla and dermal sheath cells. Our data suggested that hair follicle dermal cells were originally derived from epidermis via epithelial to mesenchymal transition.
Project description:Human hair keratin was extracted from hair by a reduction method and analyzed by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer.
Project description:Telogen (resting phase) hair follicles are more radioresistant than anagen (growth phase) ones. Irradiation of BALB/c mice in the anagen phase with γ-rays at 6 Gy induced hair follicle dystrophy, whereas irradiation in the telogen phase induced the arrest of hair follicle elongation without any dystrophy after post-irradiation depilation. In contrast, FGF18 was highly expressed in the telogen hair follicles to maintain the telogen phase and also the quiescence of hair follicle stem cells. Therefore, the inhibition of FGF receptor signaling at telogen induced the dystrophy after post-irradiation depilation. In addition, the administration of recombinant FGF18 suppressed cell proliferation in the hair follicles and enhanced the repair of radiation-induced DNA damage, so FGF18 protected the anagen hair follicles against radiation damage to enhance hair regeneration. Moreover, FGF18 reduced the expression of cyclin B1 and cdc2 in the skin and FGF18 signaling induced G2/M arrest in the keratinocyte cell line HaCaT, although no obvious change of the expression of DNA repair genes was detected by DNA microarray analysis. These findings suggest that FGF18 signaling for the hair cycle resting phase causes radioresistance in telogen hair follicles by arresting the proliferation of hair follicle cells.
Project description:Since hair growth disorders can carry a major psychological burden, more effective human hair growth-modulatory agents need to be urgently developed. Here, we used the hypertrichosis-inducing immunosuppressant, cyclosporine A (CsA), as a lead compound to identify new hair growth-promoting targets. Through microarray analysis we identified the Wnt inhibitor, SFRP1, as being downregulated in the dermal papilla (DP) of CsA-treated human scalp hair follicles (HFs) ex vivo. Therefore, we further investigated the function of SFRP1 using a pharmacological approach and found that SFRP1 regulates intrafollicular canonical Wnt/β-catenin activity through inhibition of Wnt ligands in the human hair bulb. Conversely, inhibiting SFRP1 activity through the SFRP1 antagonist, WAY-316606, enhanced hair shaft production, hair shaft keratin expression and inhibited spontaneous HF regression (catagen) ex vivo. Collectively, these data (a) identify Wnt signaling as a novel, non-immune-inhibitory CsA target; (b) introduce SFRP1 as a physiologically important regulator of canonical β-catenin activity in a human (mini-)organ; and (c) demonstrate WAY-316606 to be a promising new promoter of human hair growth. Since inhibiting SFRP1 only facilitates Wnt signaling through ligands that are already present, this “ligand-limited” therapeutic strategy for promoting human hair growth may circumvent potential oncological risks associated with chronic Wnt over-activation. We used microarrays to identify novel hair growth promoting targets in human hair follicles through the use of cyclosporine A.
Project description:Investigation of Gene Expression Profiling in Unstaged Head Hair Follicles Plucked from Men and Women Keywords: Gene Expression Profiling of Normal Hair Follicles
Project description:EGFR/MEK inhibitor therapy induces a distinct inflammatory hair follicle response that includes a collapse of hair follicle immune privilege and differential modulation of IL-33 and IL-37 expression. Our findings suggest that successful future management of EGFRi/MEKi-induced folliculitis requires restoration of hair follicle immune privilege. In this RNAseq organ-cultured human hair follicles were directly exposed to MEKi (Cobimetinib) or the control DMSO (n=5 patients (6-8 hair follicles per patient)).
Project description:rationale: comparison of gene expression profiles in wildtype and Foxn1::dnFGFR2-IIIb transgenic hair follicles; identification of targets that mediate the effects seen in transgenic hair follicles; results: as already suggested by the phenotype, the molecular abnormalities appear to be restricted to the hair shaft medulla; Igfbp5 is an important mediator of transgene-dependent effects
Project description:Fgf18 gene is strongly expressed in hair follicles of mouse dorsal skin during regressing (catagen) and resting (telogen) phases of hair cycle, but not in growth (anagen) phase. This study aims at identifying the function of Fgf18 in the regulation of hair cycle. To define target genes of Fgf18 during telogen phase of hair cycle, we generated mice in which Fgf18 gene is conditionally knocked out in keratin 5-positive epithelial cells (referred to as Fgf18 cKO below). We carried out microarray experiments with mouse back skin samples harboring telogen hair follicles obtained from three 42-d-old Fgf18 cKO male mice, or from three 42-d-old C57BL/6 male mice as control. Total RNA was isolated from each mouse and further purified to polyA RNA using oligo dT30 columns. The RNA samples were pooled for each group. Gene expression was analyzed by one-color analysis using duplicate arrays for each group.
Project description:Pla2g2e is dominantly expressed in hair follicles. Microarray gene profiling showed modest changes in the steady-state expression of a subset of skin genes.