Project description:CDK2 is a cyclin-dependent kinase involved in regulating cell cycle progression. In prostate cancer, CDK2 has been shown to be associated with poor survival. We sought to identify key genes and molecular pathways regulated by CDK2 in prostate cancer. We therefore knocked down CDK2 using siRNA in PC3 and ResA cell lines, and performed RNA-seq.
Project description:Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer.
Project description:Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition.
Project description:Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SWI/SNF-siRNA treated cells. Three SWI/SNF proteins were targeted: SMARCA2, SMARCA4, and SMARB1. Biological replicates: 1 control replicate, 2 treatment replicates per SWI/SNF protein. Technical replicates: 1 replicate per SWI/SNF protein. Cell lines: 22Rv1 and LNCaP.