Project description:Streptococcus dysgalactiae subsp. equeisimilis (SDSE) has Lancefield group G or C antigens. Recent epidemiological studies reveal that invasive SDSE infections have been increasing in Asia, Europe and US. Although SDSE possesses similar virulence factors to S. pyogenes including streptolysin S (SLS) and streptolysin O (SLO), some important S. pyogenes virulence factors including active superantigens, SpeB and a hyarulonic acids capsule are missing in SDSE genome. The mechanisms and the key virulence factors for causing invasive diseases by SDSE are poorly understood. Here, we analyzed the transcriptome of SDSE in vivo using the murine sepsis model, revealing the strategy of SDSE to destruct host tissues with the virulence factors and to scavenge depleted nutrients. The expression of SLO operon increased at relatively early stage of infection while the SLS and hyaluronidases upregulated after 4h post infection. Microarray data suggested that SDSE degraded host tissue polysaccharides by streptococcal-secreting poly/oligosaccharide lyases and simultaneously used the Entner-Doudoroff pathway to metabolize acquired carbohydrates. A global negative virulence gene regulator CsrRS of SDSE modulated the expressions of genes encoding SLS and the carbohydrate metabolism enzymes. Moreover, csrS deficient mutant induced sever systemic hemolysis in mice. The most frequently isolated stG6792 strains from invasive disease secreted abundant SLS and SLO rather than other SDSE emm types, indicating the relationship between the SLS and SLO productions and poor outcome by the stG6792 strain infection. Our findings suggest that the concomitant regulation of virulence factors destructing the host tissues and metabolic enzymes play an important role to produce invasive diseases by SDSE. To analyze gene expressions in group G streptococci with the murine infection model, we developed a custom microarray for Streptococcus dysgalactiae subsp. equisimilis (SDSE) based on the genome sequences of three SDSE strains; GGS_124, ATCC12923 and RE378. We intraperitoneally inoculated 10^8 CFU of GGS_124 stain and the csrS deficient mutant into ddY mice. Bacterial cells were collected from the abdominal cavity at 0, 2, 4 and 8 h post infection. GGS_124 cells were also collected from OD600=0.6 culture in brain heart infusion broth as a control.
Project description:Analysis of pulmonary gene expression in two mouse strains, resistant (BALB/c) and susceptible (CBA/Ca) to Streptococcus pneumoniae infection. Data collected at 6h post-infection and for control animals (PBS-treated). The list of differentially expressed genes was created by comparisons of infected versus PBS-treated animals and PBS-treated BALB/c versus CBA/Ca. The hypothesis tested in the present study was that pulmonary transcriptomes of both mouse strains differ during pneumococcal infection and in non-disease conditions. Results provided important information on differences in immune responses between both mouse strains. The results identified genes and pathways uniquely regulated by only one of the tested mouse strains helping to understand molecular mechanism behind resistance or susceptibility to pneumococcal infections.
Project description:Analysis of the pulmonary gene expression in two mouse strains BALB/cOlaHsd (BALB/c) and CBA/CaOlaHsd (CBA/Ca) after infection with various serotypes of Streptococcus pneumoniae. BALB/c mice show high resistance to infection with S. pneumoniae strain D39 (serotype 2), while CBA/Ca mice are highly susceptible. The lung samples of BALB/c and CBA/Ca were collected at 6h post-infection with one of the tested pneumococcal serotypes (2, 3, 6B and 19F) and for control animals (PBS-treated). Additionally lung samples from both mouse strains were collected at 12h and 24h post-infection with pneumococcal strain D39. The lists of differentially expressed genes were created by the comparison of infected versus PBS-treated animals and infected BALB/c versus infected CBA/Ca for each pneumococcal strain. The tested hypotheses were: 1) infection with S. pneumoniae will change the pulmonary transcriptomes of both mouse strains 2) The pulmonary gene expression will be specific for mouse strains and for the pneumococcal serotype and 3) The change in the pulmonary gene expression will associate with future clinical outcome of infection or with the type of observed inflammatory responses.
Project description:Analysis of pulmonary gene expression in two mouse strains, resistant (BALB/c) and susceptible (CBA/Ca) to Streptococcus pneumoniae infection. Data collected at 6h post-infection and for control animals (PBS-treated). The list of differentially expressed genes was created by comparisons of infected versus PBS-treated animals and PBS-treated BALB/c versus CBA/Ca. The hypothesis tested in the present study was that pulmonary transcriptomes of both mouse strains differ during pneumococcal infection and in non-disease conditions. Results provided important information on differences in immune responses between both mouse strains. The results identified genes and pathways uniquely regulated by only one of the tested mouse strains helping to understand molecular mechanism behind resistance or susceptibility to pneumococcal infections. Total RNA obtained from lung tissue from BALB/cOlaHsd and CBA/CaOlaHsd mouse strains (Harlan) 6 hours post intranasal infection with Streptococcus pneumoniae serotype 2 strain D39 dose 5.0E06 or PBS-treated animals