Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Proteomics analysis in Escherichia coli K12 (E. coli K12) at DMP concentrations of 0 mg·kg-1 (CK) and 80 mg·kg-1 (DMP) revealed the toxicity of DMP
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Modifications of RNA, known as the epitranscriptome, affect mRNA stability, translation, and splicing in eukaryotes and have implications for developmental processes, cancer, and viral infections. In prokaryotes, however, the landscape of the epitranscriptome is still poorly understood. To address this knowledge gap, we used direct RNA sequencing with Nanopore technology to study RNA modifications in the model bacterium Escherichia coli. With a single sequencing reaction, we were able to simultaneously identify and map most of the known modification types in rRNA, tRNA, and mRNA. Subsequently, a multifaceted approach integrating different algorithms for data analysis, deletion mutants, mass spectrometry, qPCR, and in vitro methylation was implemented to evaluate the presence of m5C and m6A in E. coli. Known m5C and m6A sites in rRNA were confirmed, but these modifications could not be localized in the mRNA. Nevertheless, based on the sequencing data, modifications were found to be enriched in the coding regions of genes associated with general metabolism and RNA processing. This study provides a useful resource for experimental and bioinformatic approaches to gain new insights into post-transcriptional regulation in a prokaryotic model.
Project description:Transcripitonal profiling of Escherichia coli K-12 W3110 comparing cells with and without hydrogen peroxide treatment, two biological replicates each