Project description:To investigate the influence of micropillar implants on bone regeneration, we created two critical size cranial wound repair model using implants with flat and micropillar surface topography
Project description:To investigate the influence of microtopography-induced constriction of cell nuclei on gene expression in human mesenchymal stromal cells (hMSCs)
Project description:To investigate the influence of microtopography-induced constriction of cell nuclei on gene expression in human mesenchymal stromal cells (hMSCs)
Project description:To investigate the influence of microtopography-induced constriction of cell nuclei on chromatin accessibility and gene expression in human mesenchymal stromal cells (hMSCs)
Project description:Mesenchymal stem cells (MSCs) have garnered significant attention over the past three decades due to their robust regenerative potential, primarily mediated by their paracrine activity by releasing soluble bioactive factors and extracellular vesicles (EVs). The MSC secretome plays a pivotal role in wound healing by influencing cellular migration, inflammation, angiogenesis, extracellular matrix (ECM) remodeling, and re-epithelialization. SPARC (Secreted Protein Acidic and Rich in Cysteine), a multifunctional ECM glycoprotein involved in tissue repair and remodeling, regulates key processes such as cell migration, proliferation, angiogenesis, and survival. Despite its known role in ECM dynamics, the impact of SPARC expression on the regenerative properties of MSCs remains underexplored. In this study, we hypothesized that SPARC overexpression in MSCs enhances their secretome's regenerative capacity. Using lentiviral systems, we generated SPARCoverexpressing (+SPARC) and SPARC-knockdown (KD-SPARC) MSCs to investigate SPARC's role in wound healing. Conditioned media (CM) derived from these MSCs were analyzed in vitro for their effects on human skin keratinocytes and fibroblasts. Our results revealed that SPARC expression significantly influences cell-specific migration and cell cycle. Furthermore, in an in vivo wound healing model, CM from +SPARC MSCs accelerated regeneration, while SPARC absence in MSCs CM delayed the healing process. These findings underscore the critical role of SPARC in modulating MSC secretome composition and enhancing its regenerative efficacy. This study highlights SPARC as a promising therapeutic target for the development of advanced regenerative therapies aimed at improving cutaneous wound healing outcomes
Project description:To investigate the influence of micropillars on proteomics, we seeded cells on flat and micropillar surfaces followed by (1) collection of proteins in cells on flat and micropillar surfaces; (2) collection of proteins secreted into medium by cells on flat and micropillar surfaces.
Project description:<p><strong>BACKGROUND:</strong> Ischemia/reperfusion injury (IRI) is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal Stromal Cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy, however, their full potential in treating AKI remains unknown.</p><p><strong>METHODS:</strong> In this study, we employed an in vitro model of chemically-induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards, we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential) and overall cell metabolism by metabolomics.</p><p><strong>RESULTS:</strong> Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites.</p><p><strong>CONCLUSION:</strong> Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.</p>
Project description:We found the bone marrow stromal-derived neural progenitor cells secretome have the neural protection effect. Proteomic analysis was performed nn order to analyze the protection factor in the secretome. Keywords: Neural protection, secretome