Project description:A study of cardiac troponin I evolution in mammals with high heart rates, including shrews, moles, and bats. With genomic, mRNA and protein level analyses we showed repeated loss of the N-terminal extension. Here, liquid chromatography with tandem mass spectrometry was used to verify cardiac troponin I (TNNI3) protein identity in ∼22 kDa bands from Pyrenean desman (Galemys pyrenaicus) and northern short-tailed shrew (Blarina brevicauda) hearts.
Project description:As the most widely used mammalian model organism, mice play a critical role in biomedical research for mechanistic study of human development and diseases. Today, functional sequences in the mouse genome are still poorly annotated a decade after its initial sequencing. We report here a map of nearly 300,000 cis-regulatory sequences in the mouse genome, representing active promoters, enhancers and CTCF binding sites in a diverse set of 19 tissues and cell types. This map provides functional annotation to nearly 11% of the genome, and over 70% of conserved, non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we demonstrate that cis-regulatory sequences are organized into domains of coordinately regulated enhancers and promoters. Our results provide a valuable resource for the annotation of functional elements in the mammalian genome, and study of regulatory mechanisms for tissue-specific gene expression. 19 tissues and primary cell types were examined.
Project description:As the most widely used mammalian model organism, mice play a critical role in biomedical research for mechanistic study of human development and diseases. Today, functional sequences in the mouse genome are still poorly annotated a decade after its initial sequencing. We report here a map of nearly 300,000 cis-regulatory sequences in the mouse genome, representing active promoters, enhancers and CTCF binding sites in a diverse set of 19 tissues and cell types. This map provides functional annotation to nearly 11% of the genome, and over 70% of conserved, non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we demonstrate that cis-regulatory sequences are organized into domains of coordinately regulated enhancers and promoters. Our results provide a valuable resource for the annotation of functional elements in the mammalian genome, and study of regulatory mechanisms for tissue-specific gene expression. Cortex Hi-C experiment were conducted in biological replicates