Project description:Differential ChIP-Seq data monitoring changes in active enhancer marks (H3K27ac sites) after treatment with siGRHL2 in MCF7 and T47D breast cancer models. Comparing sites altered by treatment with siGRHL2 after 48hours revealed these sites to be enriched for Estrogen Receptor (ER) binding.
Project description:Estrogens are steroid hormones that play critical roles in the initiation, development, and metastasis of breast and uterine cancers. The estrogen (E2) response in breast cancer cells is predominantly mediated by the estrogen receptor-alpha (ER alpha), a ligand-activated transcription factor. ER alpha regulates transcription of target genes through direct binding to its cognate recognition sites, known as estrogen response elements (EREs), or by modulating the activity of other DNA-bound transcription factors at alternative DNA sequences. The proto-oncogene c-myc is upregulated by ER¦à in response to E2 and encodes a transcription factor, c-MYC, which regulates a cascade of gene targets whose products mediate cellular transformation. This study aims at mapping the binding sites of these two transcription factors (ER alpha and c-MYC) in one ER alpha positive breast cancer cell line (MCF7 cell line). Keywords: ChIP-Chip Analysis This series contains ChIP-on-Chip data sets for two transcription factors (ER alpha and c-MYC) and control samples (INPUT). All the experiments are done in triplicates. MCF7 Cells were E2-deprived for 3 days and then were treated with 10 nM E2 (45 minutes and 2 hours for mapping ER alpha and c-MYC binding sites, respectively) at 80% confluence.
Project description:We aimed to investigate the chromatin binding activity of DDX3X and DDX54 RNA helicases in human ER -dependent breast cancer MCF7 cells. We run a parallel chromatin binding profiling of ER ChIP-seq. H3K4me3 profiling was used as a quality control of the ChIP-seq procedure.
Project description:Background: The ZNF217 gene, encoding a C2H2 zinc finger protein, is located at 20q13 and found amplified and overexpressed in greater than 20% of breast tumors. Current studies indicate ZNF217 drives tumorigenesis, yet the regulatory mechanisms of ZNF217 are largely unknown. Because ZNF217 associates with chromatin modifying enzymes, we postulate that ZNF217 functions to regulate specific gene signaling networks. Here, we present a large-scale functional genomic analysis of ZNF217, which provides insights into the regulatory role of ZNF217 in MCF7 breast cancer cells. Results: ChIP-seq analysis reveals that the majority of ZNF217 binding sites are located at distal regulatory regions associated with the chromatin marks H3K27ac and H3K4me1. Analysis of ChIPseq transcription factor binding sites shows clustering of ZNF217 with FOXA1, GATA3 and ERalpha binding sites, supported by the enrichment of corresponding motifs for the ERalpha-associated cisregulatory sequences. ERalpha expression highly correlates with ZNF217 in lysates from breast tumors (n=15), and ERalpha co-precipitates ZNF217 and its binding partner CtBP2 from nuclear extracts. Transcriptome profiling following ZNF217 depletion identifies differentially expressed genes co-bound by ZNF217 and ERalpha; gene ontology suggests a role for ZNF217-ERalpha in expression programs associated with ER+ breast cancer studies found in the Molecular Signature Database. Data-mining of expression data from breast cancer patients correlates ZNF217 with reduced overall survival in multiple subtypes. Conclusions: Our genome-wide ZNF217 data suggests a functional role for ZNF217 at ERalpha target genes. Future studies will investigate whether ZNF217 expression contributes to aberrant ERalpha regulatory events in ER+ breast cancer and hormone resistance Differential RNA-seq profiling from triplicate biological replicates of MCF7 cells treated with scrambled siRNA or siZNF217.
Project description:Estrogens are steroid hormones that play critical roles in the initiation, development, and metastasis of breast and uterine cancers. The estrogen (E2) response in breast cancer cells is predominantly mediated by the estrogen receptor-alpha (ER alpha), a ligand-activated transcription factor. ER alpha regulates transcription of target genes through direct binding to its cognate recognition sites, known as estrogen response elements (EREs), or by modulating the activity of other DNA-bound transcription factors at alternative DNA sequences. The proto-oncogene c-myc is upregulated by ER¦Á in response to E2 and encodes a transcription factor, c-MYC, which regulates a cascade of gene targets whose products mediate cellular transformation. This study aims at mapping the binding sites of these two transcription factors (ER alpha and c-MYC) in one ER alpha positive breast cancer cell line (MCF7 cell line). Keywords: ChIP-Chip Analysis
Project description:Estrogen Receptor (ER) is a hormonal transcription factor that plays important roles in breast cancer. It functions primarily through binding to the regulatory regions of target genes containing the consensus ERE motifs. In order to identify ER target genes and re-define the ERE motifs we performed ChIP-Seq analysis of ER in MCF7 breast cancer cell line. Applying a novel computational algorithm named Hybrid Motif Sampler (HMS), specifically designed for TFBS motif discovery in ChIP-Seq data, we were able to detect an improved ERE motif and reveal intra-motif dependency especially in neighboring base pairs. MCF7 cells were grown in starving medium (RPMI with 5% FCS) for 3 days prior to the treatment with 10 nM β-estradiol or vehicle control for 45 minutes. ChIP was done using an anti-ER antibody in both the ethl-treated and the E2-treated cells. ChIP-Seq sample prep and sequencing were done following the manufacture's protocol using the Genome Analyzer (Illumina). The read files were analyzed using ethl-treated as control for E2-treated, leading to one final peak file.