Project description:Cultivated soybean has domesticated in China for a long history, and there are several significant phenotypic differences between wild and cultivated soybeans. Seed of cultivar is generally larger than wild soybean, therefore here we comprehensively analyzed transcriptomes of thirteen soybean accessions seeds including seven wild soybeans and six landraces through applying strand-specific RNA sequencing. Differential expressed genes related seed weight were identified, some of them were known to be associated with seed development in Arabidopsis. Noncoding RNAs are known to play important roles in plant development, and we profiled the expression pattern of long noncoding RNA (lncRNA) in cultivated and wild soybean seeds. We have identified 1,251 long intergenic noncoding RNA, 243 intronic RNA and 81 antisense lncRNA, transcriptional levels of a number of lncRNAs were significantly different between cultivated and wild soybeans, suggesting that lncRNA may be involved in soybean seed development.
2017-06-13 | GSE94366 | GEO
Project description:Transcriptome data of soybeans with different seed coat colors
Project description:A dominant loss of function mutation in myo-inositol phosphate synthase gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified several transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling and seed dormancy. We validated the predicted regulatory network by comparing it with published regulatory interactions in Arabidopsis. Some regulatory interactions were found in the low phytic acid mutants but not in non-mutant plants. These findings provide important hypotheses on expression regulation of myo-inositol metabolism, and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.
Project description:Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence.
Project description:Purpose: The goals of this study are to identify what gene GmRAV1 was related to. RNA-Sequencing experiments were designed between GmRAV1-ox soybeans and DN50 soybeans. Methods: Leaves mRNA of 30-day-old DN50 and GmRAV1-ox soybeans were used by RNA sequencing using Illumina HiSeqTM2000. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. Genome_build: Glycine max Wm82.a2.v1 Results: RNA-seq data confirmed that there are 1467 genes with significant differences. Some genes expression of cytokinin and auxin signaling pathways is dramatically changed, such as GmARR9, GmAUX22, GmPIN1, GmCycD3 and GmPDV2. Conclusions: GmRAV1 are related to cytokinin and auxin signaling pathways.
Project description:Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Both spraying of leaves and seed-coating with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number, seed number and seed weight. However, the 100-seed weight was not influenced by melatonin application. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that melatonin up-regulated the expression of many genes and alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin likely achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improving of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin’s function in soybeans and other crops.
Project description:Soybeans fermented by Bacillus subtilis BJ3-2 exhibits strong ammonia taste in medium temperature below 37℃ and prominent soy sauce-like aroma moderate temperatures above 45℃. The transcriptome sequencing of Bacillus subtilis BJ3-2 (incubating at 37°C and 45°C) has been completed, screening of differentially expressed genes (DEGs) through data analysis, and analyzing their metabolic pathways, laying a foundation for exploring the regulatory mechanism of soy sauce-like aroma formation.
Project description:Soybeans (Glycine max) were genetically modified using a gene gun to produce beta-carotene, which is not normally found in the species. beta-carotene is produced in the chloroplast in which it competes with chlorophyl for production. A proteomics analysis was performed to determine the effects of the transgene on seed protein content.
Project description:Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Both spraying of leaves and seed-coating with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number, seed number and seed weight. However, the 100-seed weight was not influenced by melatonin application. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that melatonin up-regulated the expression of many genes and alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin likely achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improving of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatoninM-bM-^@M-^Ys function in soybeans and other crops. Four different treatments were chosen, water, salt, 100M-BM-5M melatonin and salt plus 100M-BM-5M melatonin. The comparison of salt/melatonin-treated sample versus water-treated sample reveals salt or melatonin induced transcriptome changes. The comparison of melatonin plus salt treated sample versus salt-treated sample reveals melatonin induced changes when salt exists.