Project description:Untangling deep-sea corals systematics: description of a new family, Stephanocyathidae (Anthozoa, Scleractinia), through a genomic approach. Targeted loci
Project description:Corals especially the reef-building species are very important to marine ecosystems. Proteomics has been used for researches on coral diseases, bleaching and responses to the environment change. Corals especially the reef-building species are very important to marine ecosystems. Proteomics has been used for researches on coral diseases, bleaching and responses to the environment change. In the present study, five protocols were compared for protein extraction from stony corals.
2022-07-24 | PXD006334 | Pride
Project description:Blue coral bacterial microbiome through time
| PRJNA1211305 | ENA
Project description:Genomic architecture of resilience to the third global coral bleaching event
Project description:Understanding the phenotypic plasticity of corals is crucial for uncovering mechanisms of resilience in warming oceans, yet the biological significance of coral color morphs still needs to be explored. Using an innovative multi-omic approach (proteomics, lipidomics, and metabolomics), we provide the first comprehensive analysis of differences between pink and brown morphs of Pocillopora verrucosa. Our data reveal key taxa, potentially pathogenic or beneficial, associated with each morph, and suggest different strategies for each color morph to cope with heat stress, either expressing proteins involved in UV protection and heterotrophic activity or enhanced levels of heat stress resilience and DNA repair. These findings offer insights into the phenotypic plasticity of coral color morphs and their differential responses to climate change.
Project description:Mesophotic coral reefs have been proposed as refugia for corals, providing shelter and larval propagules for shallow-water reefs that are disproportionately challenged by global climate change and local anthropogenic stressors. Yet, knowledge of the capacity of coral larvae to adjust to different depth environments is still limited. In this study, planulae of the reef-building coral Stylophora pistillata from 5-8 and 40-44 m depth in the Gulf of Aqaba were tested in a long-term in situ translocation experiment for their ability to settle and acclimate to reciprocal depth conditions. We assessed survival rates, photochemical, physiological and morphological characteristics, as well as gene expression variations in juveniles grown at different depths, comparing them to non-translocated adults, juveniles and planulae. We found high mortality rates among mesophotic-origin planulae, irrespective of translocation depth. Gene expression patterns suggested that deep planulae lacked settlement competency and experienced increased developmental stress upon release. Symbiont photochemical acclimation to depth occurred rapidly within 8 days, with symbiont populations showing changes in photochemical traits but no symbiont species shuffling between deep and shallow juveniles. In contrast, coral host physiological and morphological acclimation were less evident. We observed minimal overlap in gene expression patterns between different life stages and depths, indicating that gene expression significantly depends on life stage. The study also identified a set of DEGs associated with initial stress responses following translocation, lingering stress response, and environmental effects of depth. In conclusion, though our data reveal rapid symbiont acclimation, host acclimation to match deep coral phenotypes was incomplete within 60 days for planulae translocated to different depths. These results have implications for understanding the ecological significance of mesophotic reefs as potential larval sources in the face of environmental stressors.