Project description:We investigated the reported binding of telomere associated factor TERF1 and TERF2 to internal telomere sites using ChIP-Seq for these two factors in a lymphoblastoid cell line. We mapped over 40 million reads for each sample to a custom reference genome that incorporates our subtelomere assembly, and generated signal tracks using only uniquely mapping reads, and also using a multimapping pipeline we developed. We find that peaks are misshapen and made up of reads that cannot be distinguished from true telomere sequence. Removing telomere identified reads removes all internal signal. Examination of TRF1 and TRF2
Project description:We investigated the reported binding of telomere associated factor TERF1 and TERF2 to internal telomere sites using ChIP-Seq for these two factors in a lymphoblastoid cell line. We mapped over 40 million reads for each sample to a custom reference genome that incorporates our subtelomere assembly, and generated signal tracks using only uniquely mapping reads, and also using a multimapping pipeline we developed. We find that peaks are misshapen and made up of reads that cannot be distinguished from true telomere sequence. Removing telomere identified reads removes all internal signal.
Project description:Nanopore Sequencing and assembly of Col-0 carrying seed coat expressed GFP and RFP transgenes flanking the centromere of chromosome 3 (CTL 3.9) - additionally, DNA methylation was derived using deepsignal-plant using these reads.
Project description:Recent completion of the telomere-to-telomere (T2T) genome assembly has enabled a comprehensive characterization of pericentromeric SatⅠ, SatII, SatⅢ and centromeric α-satellite repeats. SatⅢ DNA constitutes ~1.56% of the genome with a reported localization across 16 chromosomes. The transcription activity of SatⅢ DNA across genome and the sequence of SatⅢ transcripts remained largely unclear. We performed nanopore long-read RNA sequencing (RNA-seq) in untreated (UN), sodium arsenite (SA: 0.1mM, 5 h) and heat shock (HS: 42°C, 2 h; 37°C, 1 h) stressed HeLa cells to characterize SatⅢ transcripts . Since a portion of SatⅢ transcripts is non-polyadenylated, We performed polyadenylated (poly(A)+) and rRNA-depleted (ribo-) nanopore cDNA long-read RNA-seq.
Project description:We identified hankyphage prophages within B. thetaiotaomicron isolates gathered from French hospitals. We extracted genomic DNA from an overnight culture from a single colony of each strain and sequenced them using Nanopore sequencing using the Plasmidsaurus platform. This long-read approach helped the assembly of the phages and determination of the hankyphage ends. We also improved the annotation of the reference hankyphage (hankyphage p00 from P. dorei HM719) using a structural prediction approach and annotated our B. thetaiotaomicron hankyphages using this new annotation. In this project we upload the genomic raw reads of nanopore sequencing of our hankyphage-bearing B. thetaiotaomicron collection (jmh strains) and the processed assembled hankyphages.
Project description:Probing epigenetic features on long molecules of DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA using GpC methyltransferase to exogenously label open chromatin, coupled with nanopore sequencing technology. We performed nanopore sequencing of Nucleosome Occupancy and Methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7, MDA-MB-231), and demonstrate the ability to directly measure methylation and chromatin accessibility in genomic features such as structural variations and repetitive elements. The long single-molecule resolution allows footprinting of protein and nucleosome binding and determining the combinatorial promoter epigenetic state on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, enabling allele-specific epigenetic analysis across the genome. We use existing SNV data on GM12878 to present the first fully phased human Probing epigenetic features on long molecules of DNA has tremendous potential to advance our understanding of the phased epigenome. We evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA using GpC methyltransferase to exogenously label open chromatin, coupled with nanopore sequencing technology. We performed nanopore sequencing of Nucleosome Occupancy and Methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7, MDA-MB-231), and demonstrate the ability to directly measure methylation and chromatin accessibility in genomic features such as structural variations and repetitive elements. The long single-molecule resolution allows footprinting of protein and nucleosome binding and determining the combinatorial promoter epigenetic state on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, enabling allele-specific epigenetic analysis across the genome. We use existing SNV data on GM12878 to present the first fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility.mosome-level allele-specific profiles of CpG methylation and chromatin accessibility.
Project description:We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from three different tissue types from three other species of squid species (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein coding genes supported by evidence and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.
Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:BmN4 cells are cultured cells derived from Bombyx mori ovaries and widely used to study transposon silencing by PIWI-interacting RNAs (piRNAs). A high-accurate genome sequence of BmN4 cells is required to analyze the piRNA pathway using RNA-seq. The genome sequence of BmN4 cells was assembled using Pacific Biosciences (PacBio) HiFi and Oxford Nanopore technology Ultralong (ONT-UL) reads. Microscopic observation and image analysis showed that BmN4 cells were octoploid on average, and the number of chromosomes per cell was highly variable. We concluded the haplotype-resolved assembly of such a complex genome would be difficult; therefore, we assembled a consensus genome sequence. RNA-seq analysis of Siwi knockdown cells also revealed that Siwi-piRISC may target Countdown (Cd), an LTR retrotransposon. By comparing the consensus genome sequence with the reads, we identified differences between haplotypes, particulary structural variants, suggesting that some transposons, including Countdown, increased their copy number in BmN4 cells.