Project description:Large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. We investigated 1,529 microbial metagenome-assembled genomes recovered from our site to understand carbon processing in this environment. Metabolic reconstruction, supported by metatranscriptomic and metaproteomic data, revealed key populations involved in organic matter degradation, including bacteria encoding a pathway for xylose degradation only previously identified in fungi.
Project description:The gut microbiome consists of trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea, has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea. Using this novel microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and provide novel methods to study potential therapies to treat mood disorders.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.
Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:This data is a case study done in the context of developing methods for assessing the taxonomic composition of microbial communities using metaproteomics. For this study with analyzed phototrophic biomats from two Soda Lakes in the Canadian Rocky Mountains using metaproteomics. For protein identification we generated a metagenome from which we predicted and annotated the protein sequences used to analyze the metaproteomes. The database is available in this PRIDE submission. Lake1 refers to Goodenough Lake (GEM, 51°19'47.64"N 121°38'28.90"W) and Lake2 referes to Last Chance Lake (LCM, 51°19'39.3" N 121°37'59.3"W).
Project description:An Easy Operating Pathogen Microarray (EOPM) was designed to detect almost all known pathogens and related species based on their genomic sequences. For effective identification of pathogens from EOPM data, a statistical enrichment algorithm has been proposed and further implemented in a user-friendly interface. A microarray was designed with probes for vertebrate-infecting virus sequences in EMBL, 18S rRNA fungi and parasite sequences from EMBL, and 16S rRNA sequences of bacteria from RDP, synthesized on the Agilent platform. The array was tested using 2 color dyes on cultured microbes and on clinical samples from sick and healthy people, looking for differences in clinically ill people compared to a number of healthy "controls".
Project description:Biogas plants (BGPs) produce methane and carbon dioxide through the anaerobic digestion of agricultural waste. Identification of strategies for more stable biogas plant operation and increased biogas yields require better knowledge about the individual degradation steps and the interactions within the microbial communities. The metaprotein profiles of ten agricultural BGPs and one laboratory reactor were investigated using a metaproteomics pipeline. Fractionation of samples using SDS-PAGE was combined with a high resolution Orbitrap mass spectrometer, metagenome sequences specific for BGPs, and the MetaProteomeAnalyzer software. This enabled us to achieve a high coverage of the metaproteome of the BGP microbial communities. The investigation revealed approx. 17,000 protein groups (metaproteins), covering the majority of the expected metabolic networks of the biogas process such as hydrolysis, transport, fermentation processes, amino acid metabolism, methanogenesis and bacterial C1-metabolism. Biological functions could be linked with the taxonomic composition. Two different types of BGPs were classified by the abundance of the acetoclastic methanogenesis and by abundance of enzymes implicating syntrophic acetate oxidation. Linking of the identified metaproteins with the process steps of the Anaerobic Digestion Model 1 proved the main model assumptions but indicated also some improvements such as considering syntrophic acetate oxidation. Beside the syntrophic interactions, the microbial communities in BGPs are also shaped by competition for substrates and host-phage interactions causing cell lysis. In particular, larger amounts of Bacteriophages for the bacterial families Bacillaceae, Enterobacteriaceae and Clostridiaceae, exceeding the cell number of the Bacteria by approximately four-fold. In contrast, less Bacteriophages were found for Archaea, but more CRISPR proteins were detected. On the one hand, the virus induced turnover of biomass might cause slow degradation of complex biomass in BGP. On the other hand, the lysis of bacterial cells allows cycling of essential nutrients.