Project description:Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the genetic and epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs and deliver a better product quality to consumers. However, little is known about epigenetic effects in the muscle of Bos taurus and their implications in tenderness, and no studies have been conducted in Bos indicus. Therefore, we analyzed Reduced Representation Bisulfite Sequencing (RRBS) to search for differences in the methylation profile of Bos indicus skeletal muscle with extreme values for beef tenderness (tender = 6 animals, tough = 6 animals).
Project description:Satellite cells are myogenic precursor cells in adult skeletal muscle and play a crucial role in skeletal muscle repair, remodeling, and maintenance. Like myoblasts, satellite cells have the ability to proliferate, differentiate, and fuse to form multinucleated myofibers. In this study we aimed to identify the enhancers and the transcription factors binding to these enhancers that control gene expression in proliferating and differentiating bovine satellite cells. Using ChIP-seq, we identified 56,973 and 54,470 active enhancers, genomic regions marked with both H3K4me1 and H3K27ac, and 50,956 and 59,174 repressed enhancers, genomic regions marked with H3K27me3, in proliferating and differentiating bovine satellite cells, respectively. Motif enrichment analyses revealed many transcription factors including the AP-1 family transcription factors that regulate gene expression in proliferating bovine satellite cells and many transcription factors besides MyoG that regulate gene expression in differentiating bovine satellite cells.
Project description:Environmental heat stress in dairy cattle leads to poor health, reduced milk production and decreased reproductive efficiency. Multiple genes interact and coordinate the response to overcome the impact of heat stress. The present study identified heat shock regulated genes in the peripheral blood mononuclear cells (PBMC). Genome-wide expression patterns for cellular stress response were compared between two genetically distinct groups of cattle viz., Hariana (B. indicus) and Vrindavani (B. indicus X B. taurus). In addition to major heat shock response genes, oxidative stress and immune response genes were also found to be affected by heat stress. Heat shock proteins such as HSPH1, HSPB8, FKB4, DNAJ4 and SERPINH1 were up-regulated at higher fold change in Vrindavani compared to Hariana cattle. The oxidative stress response genes (HMOX1, BNIP3, RHOB and VEGFA) and immune response genes (FSOB, GADD45B and JUN) were up-regulated in Vrindavani whereas the same were down-regulated in Hariana cattle. The enrichment analysis of dysregulated genes revealed the biological functions and signaling pathways that were affected by heat stress. Overall, these results show distinct cellular responses to heat stress in two different genetic groups of cattle. This also highlight the long-term adaptation of B. indicus (Hariana) to tropical climate as compared to the crossbred (Vrindavani) with mixed genetic makeup (B. indicus X B. taurus).