Project description:In this study, we characterized the adaptive response of arterial endothelial cells to acute increases in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress magnitude (30 ± 15 dynes/cm2) was then applied. The transcriptomics studies using microarray identified genes that were sensitive to the elevated shear magnitude. A significant number of the identified genes in our study are previously unknown as sensitive to shear stress. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress magnitude (30 ± 15 dynes/cm2) was then applied. Gene expression at multiple time points was measured using microarray.
Project description:In this study, we characterized the adaptive response of arterial endothelial cells to acute increases in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress magnitude (30 ± 15 dynes/cm2) was then applied. The transcriptomics studies using microarray identified genes that were sensitive to the elevated shear magnitude. A significant number of the identified genes in our study are previously unknown as sensitive to shear stress.
Project description:The lymphatic system removes fluid from the interstitial space and returns it to the blood with a tremendous capacity: during inflammation, lymph flow rates can increase dramatically; however, during chronic lymphedema, there is little or no flow. The ability of lymphatic endothelium to sense and actively regulate this function is unknown, and shear stress is likely a key indicator of lymph flow. We profiled gene expression in human dermal microvascular lymphatic endothelial cells exposed to 0, 2 and 20 dyn/cm2 shear stress as representative of chronic lymphedema, normal, and acute inflammatory conditions, respectively. We found important adaptive responses correlated to multiple aspects of lymphatic function. Importantly, shear stress upregulated intracellular water and solute transporters while decreasing cell-cell adhesion and basement membrane components and increasing cell-matrix interactions. This data indicate that during high loading conditions, both passive and active drainage function increases, while conversely when fluid drainage is blocked, transport function is diminished in the lymphatic endothelium. These data demonstrate the first functional-adaptive response of lymphatic endothelium to flow conditions, thus indicating that the lymphatic endothelium plays an active role in regulating their function. Keywords: Shear stress, dose response, cell type comparison Lymphatic endothelial cells were subjected to 0, 2, or 20 dyn/cm2 shear stress; blood endothelial cells were subjected to 0 or 20 dyn/cm2 shear stress. Four samples were used for each cell type/shear level group for a total of 20 samples. Each sample was independently compared to human universal reference RNA via two-color microarray analysis for a total of 20 arrays. In all cases, the experimental samples were labeled with Cy5 dye while the reference RNA was labeled with Cy3.
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig 47 samples
Project description:Background: Endothelial cell (ECs) heterogeneity is an emerging area of research in EC biology. Veins, arteries, and microvascular endothelial cells, termed “vascular-type” heterogeneity in this report, have been shown to have heterogeneity in gene expression and function. In addition to this innate heterogeneity, we hypothesized that different vascular-type ECs would also demonstrate heterogeneity in their response to shear stress. Objectives: We interrogated whether vascular-type ECs would demonstrate variations in transcriptional expression patterns under shear stress. Methods: Human umbilical vein endothelial cells (HUVECs), human pulmonary arterial endothelial cells (HPAECs), and human microvascular endothelial cells (HMVECs) were commercially purchased and subjected to shear stress conditions of 0, 1, 4, and 10 dynes/cm2 of laminar shear stress. After exposure to shear stress, cells were analyzed for cellular alignment and RNA was extracted and evaluated via bulk RNA-sequencing (RNA-seq). Results: All ECs demonstrated significant changes in alignment under shear stress. Shear stress significantly affected the transcriptomes of ECs resulting in differentially expressed genes and pathways; while several genes were differentially expressed across all three vascular-types (44.2%), most differentially expressed genes were limited to 1 or 2 of the vascular-types. Hemostatic and thrombotic genes were found to have differential expression patterns under conditions of shear stress, and VWF demonstrated a pattern of vascular-type heterogeneity in response to shear stress. Conclusions: Shear stress causes changes in cellular alignment and transcriptional patterns in ECs that is dependent upon underlying vascular-type. Therefore, endothelial vascular-type heterogeneity can regulate response to shear stress, especially in hemostatic and thrombotic gene expression.