Project description:Samples GSM206658-GSM206693: Acquired Stress resistance in S. cerevisiae: NaCl primary and H2O2 secondary Transcriptional timecourses of yeast cells exposed to 0.7M NaCl alone, 0.5mM H2O2 alone, or 0.5mM H2O2 following 0.7M NaCl, all compared to an unstressed sample. Repeated using msn2∆ strain. Samples GSM291156-GSM291196: Transcriptional response to stress in strains lacking MSN2 and/or MSN4 Transcriptional timecourses of yeast cells (WT, msn2∆, msn4∆, or msn2∆msn4∆) exposed to 0.7M NaCl for 45 minutes or 30-37˚C Heat Shift for 15 min compared to an unstressed sample of the same strain. Keywords: Stress Response
Project description:In this study we investigated the transcriptional response of the yeast Saccharomyces cerevisiae to potassium starvation. To this end yeast cells were grown for 60 min in media without potassium or in media with a standard potassium concnetration (50 mM KCl). Using Serial Analysis of Gene Expression (SAGE)-tag sequencing the effect of potassium starvation on the transcriptome was determined.
Project description:Using multiple genetic screening assays and high-throughput analysis approaches, this study explored the genotoxic and evolutional effects of nonlethal dosages of furfural in yeast model.
Project description:Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent of their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most ap-plied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed a considerable contamination with non-cell wall proteins, mainly comprising mitochondrial proteins. Here-in, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial proteins removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and enriching significant-ly their amounts. This promising method could be reliably implemented in lab-scale and industrial processes for “pure” cell wall isolation.