Project description:Epigenetic modifications are thought to be important for gene expression changes during development and aging. However, besides the Sir2 histone deacetylase in somatic tissues and H3K4 trimethylation in germlines, there is scant evidence implicating epigenetic regulations in aging. The insulin/IGF-1 signaling (IIS) pathway is a major lifespan regulatory pathway. Here we show that progressive increases in gene expression and loss of H3K27me3 on IIS components are due, at least in part, to increased activity of the H3K27 demethylase UTX-1 during aging. RNAi of the utx-1 gene extended the mean lifespan of C. elegans by ~30%, dependent on DAF-16 activity and not additive in daf-2 mutants. The loss of utx-1 increased H3K27me3 on the Igf1r/daf-2 gene and decreased IIS activity leading to a more "naive" epigenetic state. Like stem cell reprogramming, our results suggest that reestablishing epigenetic marks lost during aging might help "reset" the developmental age of animal cells. Examination of H3K27me3 in young and old worms without or with Utx-1 RNAi.
Project description:Epigenetic modifications are thought to be important for gene expression changes during development and aging. However, besides the Sir2 histone deacetylase in somatic tissues and H3K4 trimethylation in germlines, there is scant evidence implicating epigenetic regulations in aging. The insulin/IGF-1 signaling (IIS) pathway is a major lifespan regulatory pathway. Here we show that progressive increases in gene expression and loss of H3K27me3 on IIS components are due, at least in part, to increased activity of the H3K27 demethylase UTX-1 during aging. RNAi of the utx-1 gene extended the mean lifespan of C. elegans by ~30%, dependent on DAF-16 activity and not additive in daf-2 mutants. The loss of utx-1 increased H3K27me3 on the Igf1r/daf-2 gene and decreased IIS activity leading to a more "naive" epigenetic state. Like stem cell reprogramming, our results suggest that reestablishing epigenetic marks lost during aging might help "reset" the developmental age of animal cells.
Project description:Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Here, we investigate the proteomic landscape of Caenorhabditis elegans with severe mitochondrial deficiency in the context of insulin signaling inhibition.
Project description:Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Here, we investigate the phosphoproteomic landscape of Caenorhabditis elegans with severe mitochondrial deficiency in the context of insulin signaling inhibition.
Project description:Dietary restriction (DR) is the most effective and reproducible intervention to extend lifespan in divergent species1. In mammals, two regimens of DR, intermittent fasting (IF) and caloric restriction (CR), have proven to extend lifespan and reduce the incidence of age-related disorders2. An important characteristic of IF is that it can increase lifespan, even when there is little or no overall decrease in calorie intake2. The molecular mechanisms underlying IF-induced longevity, however, remain largely unknown. Here we establish an IF regimen that effectively extends the lifespan of Caenorhabditis elegans, and show that a nutrient-related signalling molecule, the low molecular weight GTPase Cel-Rheb, has a dual role in lifespan regulation; Cel-Rheb is required for the IF-induced longevity, whereas inhibition of Cel-Rheb mimics the CR effects. We also show that Cel-Rheb exerts its effects in part via the insulin/IGF-like signalling effector DAF-16 in IF, and that Cel-Rheb is required for fasting-induced nuclear translocation of DAF-16. We find that HSP-12.6, a DAF-16 target, functions to mediate the IF-induced longevity. Furthermore, our analyses demonstrate that most of fasting-induced upregulated genes require Cel-Rheb function for their induction, and that Cel-Rheb/Cel-TOR signalling is required for the fasting-induced downregulation of an insulin-like peptide, INS-7. These findings identify the essential role of signalling via Cel-Rheb in IF-induced longevity and gene expression changes, and suggest a molecular link between the IF-induced longevity and the insulin/IGF-like signalling pathway.
Project description:Insulin/IGF-1 Signaling (IIS) is known to constrain longevity by inhibiting the transcription factor FOXO. How phosphorylation mediated by IIS kinases regulates lifespan beyond FOXO remains unclear. Here, we profile IIS-dependent phosphorylation changes in a large-scale quantitative phosphoproteomic analysis of wild-type and three IIS mutant Caenorhabditis elegans strains. We quantify more than 15,000 phosphosites and find that 476 of these are differentially phosphorylated in the long-lived daf-2/insulin receptor mutant. We develop a machine learning-based method to prioritize 25 potential lifespan-related phosphosites. We perform validations to show that AKT-1 pT492 inhibits DAF-16/FOXO and compensates the loss of daf-2 function, that EIF-2α pS49 potently inhibits protein synthesis and daf-2 longevity, and that reduced phosphorylation of multiple germline proteins apparently transmits reduced DAF-2 signaling to the soma. In addition, an analysis of kinases with enriched substrates detects that casein kinase 2 (CK2) subunits negatively regulate lifespan. Our study reveals detailed functional insights into longevity.
Project description:Dietary restriction (DR) is the most effective and reproducible intervention to extend lifespan in divergent species1. In mammals, two regimens of DR, intermittent fasting (IF) and caloric restriction (CR), have proven to extend lifespan and reduce the incidence of age-related disorders2. An important characteristic of IF is that it can increase lifespan, even when there is little or no overall decrease in calorie intake2. The molecular mechanisms underlying IF-induced longevity, however, remain largely unknown. Here we establish an IF regimen that effectively extends the lifespan of Caenorhabditis elegans, and show that a nutrient-related signalling molecule, the low molecular weight GTPase Cel-Rheb, has a dual role in lifespan regulation; Cel-Rheb is required for the IF-induced longevity, whereas inhibition of Cel-Rheb mimics the CR effects. We also show that Cel-Rheb exerts its effects in part via the insulin/IGF-like signalling effector DAF-16 in IF, and that Cel-Rheb is required for fasting-induced nuclear translocation of DAF-16. We find that HSP-12.6, a DAF-16 target, functions to mediate the IF-induced longevity. Furthermore, our analyses demonstrate that most of fasting-induced upregulated genes require Cel-Rheb function for their induction, and that Cel-Rheb/Cel-TOR signalling is required for the fasting-induced downregulation of an insulin-like peptide, INS-7. These findings identify the essential role of signalling via Cel-Rheb in IF-induced longevity and gene expression changes, and suggest a molecular link between the IF-induced longevity and the insulin/IGF-like signalling pathway. Experiment Overall Design: We examined fasting-induced changes of the gene expression profiles in Caenorhabditis elegans. We performed the genome-wide analysis by using Affymetrix GeneChip oligonucleotide microarrays, and examined the effect of downregulation of Cel-Rheb and Cel-TOR by RNAi on the expression profiles. Five independent experiments were performed with wild type N2. Synchronized worms under six conditions (control-fed, control-fasting, Rheb RNAi-fed, Rheb RNAi-fasting, TOR RNAi-fed, and TOR RNAi-fasting) were collected and frozen with liquid nitrogen at day 4 of adulthood. Total RNA was extracted with Sepasol(R)-RNA â Super (Nacalai tesque), and purified with RNeasy Mini Kit (Qiagen), according to manufactureâs instructions. Synthesis of cDNA, in vitro transcription and biotin labelling cRNA, and hybridization to the C. elegans Genome Array (Affymetrix) were performed according to Affymetrix protocols. Hybridized arrays were scanned using an Affymetrix GeneChip Scanner. Scanned chip images were analyzed with GeneSpring GX 7.3.1 (Agilent Technologies).
Project description:The role of ellagic acid (EA), a natural antioxidant, in regulating anti-aging and its underlying mechanisms remains unclear. In this study, we investigated the anti-aging effects and molecular mechanisms of EA in Caenorhabditis elegans (C. elegans). Our results demonstrate that EA extends the lifespan of C. elegans, enhances motility, reduces lipofuscin accumulation, and improves overall healthspan. Additionally, EA reduces reactive oxygen species (ROS) accumulation in C. elegans under conditions of heat and oxidative stress. The insulin/IGF-1 signaling (IIS) pathway, a key regulator of longevity and stress resistance in C. elegans, was found to mediate EA's effects. EA treatment did not extend the lifespan of mutants defective in daf-2, daf-16, hsf-1, hlh-30, and skn-1, confirming that EA’s lifespan-extending effect operates through the IIS pathway. Furthermore, EA treatment increased the expression of stress response genes downstream of the IIS pathway. Based on RNA sequencing data, we further explored the molecular mechanisms and potential regulatory roles of EA in anti-aging.
Project description:we used Caenorhabditis elegans as a model organism, to investigate the effect of mannose on the lifespan. Using nematode RNAi methods, RT-PCR, RNA-seq and other experimental method, we explored the possible mechanism for how mannose change the lifespan of Caenorhabditis elegans.
Project description:Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on lifespan itself. We found that adding a small amount of glucose to the medium (0.1-2%) shortened the lifespan of C. elegans. Glucose shortened lifespan by inhibiting the activities of lifespan-extending transcription factors that are also inhibited by insulin signaling: the FOXO family member DAF-16 and the heat shock factor HSF-1. This effect involved the down-regulation of an aquaporin glycerol channel, aqp-1. We show that changes in glycerol metabolism are likely to underlie the lifespan-shortening effect of glucose, and that aqp-1 may act cell non-autonomously as a feedback regulator in the insulin/IGF-1 signaling pathway. Insulin down-regulates similar glycerol channels in mammals, suggesting that this glucose-responsive pathway might be conserved evolutionarily. Together these findings raise the possibility that a low-sugar diet might have beneficial effects on lifespan in higher organisms. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE18561: Adult C. elegans: Control daf-2 mutants treated with daf-16 RNAi vs. daf-2 mutants treated with empty vector RNAi GSE18562: Adult C. elegans: Control OP50 culture vs. OP50 + 2% glucose culture