Project description:H3K27Ac enrichment in intestinal epithelial cells from intestine of germ-free and segmented filamentous bacteria (SFB)-monoassociated mice. Intestinal epithelial cells were harvested from the terminal ileum of germ-free or SFB mice. Chromatin immunoprecipitation was performed with anti-H3K27Ac. Sequencing was performed using the Illumina HiSeq2500. Reads were mapped to the mm10 genome using Bowtie.
Project description:In this project we profiled small intestinal epithelium, lamina propria immune cells as well as intraepithelial immune cells from 5-weeks old WT mice derived from Jackson laboratories and littermate colonized with segmented filamentous bacteria (SFB) 2 weeks prior to analysis, using 10x droplet-based single-cell RNA sequencing.
Project description:Vertebrates typically harbor a rich gastrointestinal microbiota, which has co-evolved with the host over millennia and is essential for several of its physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T helper (Th)17 population in the small intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type-1 diabetes in this prototypical, spontaneous model. There was a strong co-segregation of SFB-positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T cell compartments of the gut, pancreas or systemic lymphoid tissues. Th17 signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, likely reflecting their variable dependence on different Th subsets. All gene expression profiles were obtained from highly purified T cell populations sorted by flow cytometry. Cells were sorted from individual mice with at least four replicates generated for all groups. RNA from 1-5 x 104 cells was amplified, labeled, and hybridized to Affymetrix Mo GENE 1.0ST microarrays. Raw data were preprocessed with the RMA algorithm in GenePattern, and averaged expression values were used for analysis.
Project description:Vertebrates typically harbor a rich gastrointestinal microbiota, which has co-evolved with the host over millennia and is essential for several of its physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T helper (Th)17 population in the small intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type-1 diabetes in this prototypical, spontaneous model. There was a strong co-segregation of SFB-positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T cell compartments of the gut, pancreas or systemic lymphoid tissues. Th17 signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, likely reflecting their variable dependence on different Th subsets.
Project description:Expression in intestinal epithelial cells from intestine of germ-free and segmented filamentous bacteria (SFB)-monoassociated mice during infection. Intestinal epithelial cells were harvested from the terminal ileum of germ-free or SFB mice infected with Citrobacter rodentium for 6 days. RNA was isolated using RNeasy Kit (Qiagen). Sequencing was performed using the Illumina HiSeq2500. Reads were mapped to the mm10 genome using Bowtie.
Project description:Segmented filamentous bacteria (SFB) are ubiquitous intestinal commensals that promote immune system development and pathogen protection. The unicellular teardrop-shaped SFB, called intracellular offsprings (IOs), attach to ileal epithelial cells via their unique tip structure and outgrow into filaments. To obtain a more detailed view of the SFB surface, particularly at the tip structure, we used a combination of cryo-EM and cryo-ET to characterize the surface structures present in IOs and filaments from mouse- and rat-SFB. HDX-MS was used to identified the epitope recognized by a specific VHH raised against the Th17 antigen (AID45212) located at the SFB surface.
Project description:This a model from the article:
Modelling the onset of Type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease?
Maree AF, Kublik R, Finegood DT, Edelstein-Keshet L.Philos Transact A Math Phys Eng Sci.2006 May 15;364(1842):1267-82.
16608707,
Abstract:
A wave of apoptosis (programmed cell death) occurs normally in pancreatic beta-cells of newborn mice. We previously showed that macrophages from non-obese diabetic (NOD) mice become activated more slowly and engulf apoptotic cells at a lower rate than macrophages from control (Balb/c) mice. It has been hypothesized that this low clearance could result in secondary necrosis, escalating inflammation and self-antigen presentation that later triggers autoimmune, Type 1 diabetes (T1D). We here investigate whether this hypothesis could offer a reasonable and parsimonious explanation for onset of T1D in NOD mice. We quantify variants of the Copenhagen model (Freiesleben De Blasio et al. 1999 Diabetes 48, 1677), based on parameters from NOD and Balb/c experimental data. We show that the original Copenhagen model fails to explain observed phenomena within a reasonable range of parameter values, predicting an unrealistic all-or-none disease occurrence for both strains. However, if we take into account that, in general, activated macrophages produce harmful cytokines only when engulfing necrotic (but not apoptotic) cells, then the revised model becomes qualitatively and quantitatively reasonable. Further, we show that known differences between NOD and Balb/c mouse macrophage kinetics are large enough to account for the fact that an apoptotic wave can trigger escalating inflammatory response in NOD, but not Balb/c mice. In Balb/c mice, macrophages clear the apoptotic wave so efficiently, that chronic inflammation is prevented.
This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.