Project description:CHD3 proteins are ATP-dependent chromatin remodeling factors that are components of diverse multisubunit complexes that can either repress or activate gene expression. In plants, the CHD3 protein PICKLE (PKL) is necessary for repression of seed-specific genes during germination and promotes deposition of the repressive epigenetic mark trimethylation of histone H3 lysine 27 (H3K27me3). It is unknown, however, if PKL acts directly at H3K27me3-enriched loci. We undertook a microarray analysis of 14-day-old plants and found that PKL continues to play an important role in expression of H3K27me3-enriched genes and in specification of developmental identity after germination. We used microarray to identify genes that are differentialy expressed in 14-day-old pkl seedlings and used chormatin immunoprecipitation to identify genes that are the direct targets of PKL. Wild-type (Col-0) and pkl-1 seedlings were grown on 1/2 MS plates with constant light and harvsted after 14-day growth. Three biological replicates.
Project description:CHD3 proteins are ATP-dependent chromatin remodeling factors that are components of diverse multisubunit complexes that can either repress or activate gene expression. In plants, the CHD3 protein PICKLE (PKL) is necessary for repression of seed-specific genes during germination and promotes deposition of the repressive epigenetic mark trimethylation of histone H3 lysine 27 (H3K27me3). It is unknown, however, if PKL acts directly at H3K27me3-enriched loci. We undertook a microarray analysis of 14-day-old plants and found that PKL continues to play an important role in expression of H3K27me3-enriched genes and in specification of developmental identity after germination. We used microarray to identify genes that are differentialy expressed in 14-day-old pkl seedlings and used chormatin immunoprecipitation to identify genes that are the direct targets of PKL.
Project description:1-day-old seedlings of Col-0 and vil1-1 were performed RNA-Seq to identify differentially expressed genes caused by VIL1 mutation in Arabidopsis
Project description:Chromatin immunoprecipitation was performed in nlp2-2 Arabidopsis thaliana Col-0 14-d-old seedlings complemented by a pNLP2::NLP2-GFP construct upon 30 minutes NO3- resupply after a 3-day NO3- starvation.
Project description:<p>The Unfolded Protein Response (UPR) is a retrograde, ER-to-nucleus, signalling pathway which is conserved across kingdoms. In plants, it contributes to development, reproduction, immunity and tolerance to abiotic stress. This metabolomic dataset was produced from 14-day-old Arabidopsis thaliana seedlings challenged by tunicamycin (Tm), an antibiotic inhibiting Asn-linked glycosylation in the endoplasmic reticulum (ER), causing an ER stress and eventually activating the UPR. Wild-type (WT), bzip60 single mutant and the double mutant deficient for two main actors of the UPR (INOSITOL-REQUIRING ENZYME 1A and INOSITOL-REQUIRING ENZYME 1B) were used as genetic backgrounds in our experimental setup, allowing to distinguish among differentially-overaccumulated metabolites which ones are dependent on IRE1s and/or bZIP60. Also, shoots and roots were harvested separately to determine organ-specific metabolic responses to Tm.</p>