Project description:ChIP-chip of Pol II, H3K36me3 and CENP-A in met-1 C. elegans early embryo EXPERIMENT TYPE: CHIP-chip. BIOLOGICAL SOURCE: Strain: met-1(n4337); Developmental Stage: Early Embryo; Genotype: met-1(n4337); Sex: population predominantly Hermaphrodites perhaps with some Males; NUMBER OF REPLICATES: 2; EXPERIMENTAL FACTORS: temperature 20
Project description:H3K36me3 is a hallmark of actively and recently transcribed genes and contributes to cellular memory and identity. The deposition of H3K36me3 occurs co-transcriptionally when the methyltransferase SETD2 associates with RNA polymerase II. Using electron microscopy assisted by protein-protein crosslinking mass spectrometry, we solved three cryo-EM structures of SETD2 bound to Pol II elongation complexes at different states of nucleosome passage. Together with functional probing, our results suggest a 3-step mechanism of transcription-coupled H3K36me3 deposition. First, binding to the elongation factor SPT6 tethers the catalytic SET domain in proximity to the upstream DNA. Second, Pol II nucleosome passage leads to the transfer of a hexasome from downstream to upstream, poised for methylation. Finally, continued transcription leads to upstream nucleosome reassembly, partial dissociation of the histone chaperone FACT and sequential methylation of both H3 tails, completing H3K36me3 deposition of an upstream nucleosome after RNA polymerase II passage.
Project description:At Schizosaccharomyces pombe centromeres, heterochromatin formation is required for de novo incorporation of the histone H3 variant CENP-A/Cnp1, which in turn directs kinetochore assembly and ultimately chromosome segregation during mitosis. Noncoding RNAs (ncRNAs) transcribed by RNA polymerase II (Pol II) directs heterochromatin formation via the RNAi machinery, but also through RNAiindependent RNA processing factors. Control of centromeric ncRNA transcription is therefore a key factor for proper centromere function. We here use transcriptional profiling, gene inactivation experiments, and chromatin immunoprecipitation analyses to demonstrate that the Mediator complex directs ncRNA transcription and regulates centromeric heterochromatin formation in fission yeast. Mediator co-localizes with Pol II at centromeres and loss of the Mediator subunit Med20 causes a dramatic increase in pericentromeric transcription and desilencing of the core centromere. As a consequence, heterochromatin formation is impaired both via the RNAi dependent and independent pathways, resulting in loss of CENP-A/Cnp1 from the core centromere, defect kinetochore function, and a severe chromosome segregation defect. Interestingly, the increased centromeric transcription observed in med20Δ appears to directly block CENP-A/Cnp1 incorporation and inhibition of Pol II transcription can suppress the observed phenotypes. Our data thus identify Mediator as a crucial regulator of ncRNA transcription at fission yeast centromeres and add another crucial layer of regulation to centromere function. 3 samples examined: wild type chromatin incubated with beads as the non antibody control, wild type chromatin incubated with RNA Polymerase II CTD domain antibody and Protein G beads, and TAP-Med7 cells chromatin incubated with IgG beads.