Project description:Plakoglobin (PG; γ-Catenin, JUP) is a protein with controversial function. First described as a component of intercellular junctions, it has remained unresolved whether this near-ubiquitously expressed protein acts as a genuine transcriptional regulator in adult tissue like its closest relative β-catenin. Here we have mapped the global gene targets of PG by ChIP-chip in differentiating skin keratinocytes. Applying a peak algorithm, over 5’000 high-confidence PG target promoters were identified and 2’000 for β-catenin with an overlap of 38%. Bioinformatics analyses most significantly associated PG target genes with the Wnt signaling pathway as well as relevant pathways for keratinocyte differentiation. Using a combination of wild-type, PG, β-catenin and PG/β-catenin double null keratinocytes, PG was functionally validated as a LEF/TCF-dependent transcriptional regulator. These data challenge the current understanding of Wnt signaling, one of the most important pathways in tissue homeostasis, by identifying PG as a potent LEF/TCF-dependent transcriptional regulator which functionally overlaps with β-catenin.
Project description:Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs could provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this by exerting microenvironmental control over mouse embryonic stem cells (ESCs). Microfluidic encapsulation of ESCs in agarose microgels stabilized the naïve pluripotency network and specifically induced expression of Plakoglobin (Jup), a vertebrate homologue of β-catenin. Indeed, overexpression of Plakoglobin was sufficient to fully re-establish the naïve pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we found that in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos – further strengthening the link between Plakoglobin and naïve pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naïve pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:In adult K14Î?NLef1 mouse, the overexpression of â??NLef1, a Ã?-catenin dominat negative, in basal keratinocytes leads to the conversion of hair follicles into multilayered epithelial cysts and ectopic sebaceous gland. â??NLef1 transcriptional activity led to Gata6 overexpression in the pilosebaceous unit in transgenic mice. To uncover direct target genes of Gata6 we performed ChIP-Seq experiments in primary mouse keratinocytes. Examination of Gata6 genomic targets in mouse primary keratinocytes
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other