Project description:A genome-scale metabolic model for the gram-positive, and polysaccharide degrading bacterium Ruminiclostridium cellulolyticum H10. The model includes manually reconstructed pathways for degradation of oligosaccharides from cellulose, xyloglucan, and arabinoxylan. The model has been compared and curated to experimental data. The draft model was initially created using CarveMe (version 1.5.1) with the gram-positive universal model as the template.
2025-03-19 | MODEL2503030001 | BioModels
Project description:Rhizoctonia solani RNA-sequencing with humic substance added
Project description:The biodegradation of lignite (brown coal) by microorganisms has the potential for bioremediation of contaminated mining sites and to generate alternative ways to valorize lignite, such as by producing humic acids or building block chemicals. Previously, a lignite-degrading strain of Trichoderma was isolated, but the genomic and transcriptomic basis of its lignite-degrading ability remained unknown. Here we report that the sequenced genome of the T. cf. simile WF8 strain encoded for enzymes with roles in the degradation of lignite, and potentially tolerance to lignite-breakdown products. There was only a small number of annotated unique genes in the T. cf. simile WF8 genome compared to other fungi, and likely the expression of gene families shared with other fungi is a key factor in lignite biosolubilization by T. cf. simile. The transcriptomes were analyzed of T. cf. simile cultured at two time-points with the lignite-breakdown model compounds 4-phenoxybenzoic acid (which was growth inhibitory), and phenetole and 9-10-dibutoxyanthracene (neither of which inhibited growth), and showed ~20% of genes up-regulated by one or more of these compounds. The analysis highlights candidates for characterization and engineering enzyme over-expressing T. cf. simile strains with potentially improved degradation capacity, e.g., laccases and peroxidases, or tolerance and catabolism of breakdown products, e.g., cytochrome P450s, and ring cleavage dioxygenases. Published in International Biodeterioration & Biodegradation (https://doi.org/10.1016/j.ibiod.2025.105997)
2025-01-05 | GSE285891 | GEO
Project description:Microbial community of lake sediments with different humic substance concentration
Project description:Autophagy is a catabolic membrane trafficking process involved in degradation of cellular constituents through lysosomes, which maintains cell and tissue homeostasis. While much attention has been focused on autophagic turnover of cytoplasmic materials, little is known regarding the role of autophagy in degrading nuclear components. Here we report that autophagy machinery mediates degradation of nuclear lamina in mammalian cells, a process we term laminophagy. The autophagy protein LC3 is present in the nucleus and directly interacts with the nuclear lamina protein Lamin B1, and associates with lamin-associated domains (LADs) on chromatin. This interaction does not downregulate Lamin B1 during starvation, but mediates nuclear lamina degradation upon tumorigenic insults, such as by oncogenic Ras. Laminophagy is achieved by nucleus-to-cytosol transport that delivers Lamin B1 to lysosome for degradation. Inhibiting autophagy or LC3-Lamin B1 interaction prevents oncogenic Ras-induced Lamin B1 loss and delays oncogene-induced cell cycle arrest. Our study unveils a role of autophagy in degrading nuclear materials, and suggests laminophagy as a guarding mechanism protecting cells from tumorigenesis.
2015-10-08 | GSE63440 | GEO
Project description:Microorganisms that degrade ammonical nitrogen and humic substance in landfill leachate