Project description:Pre-mRNA splicing relies on the still poorly understood dynamic interplay between more than 150 protein components of the Spliceosome, and the steps at which splicing can be regulated remain largely unknown. Here we systematically analyze the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and use this information to reconstruct a network of functional interactions. The network accurately captures well-established physical and functional associations and identifies new, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during Spliceosome assembly. In contrast with standard models of regulation at early events of splice site recognition, factors involved in catalytic activation of the Spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF and on targets of anti-tumor drugs, and can be widely used to identify mechanisms of splicing regulation. RNA from 3 biological replicates of 72 hours knockdowns of human IK or SMU1 and a control set were used. Changes between the control and knockdowns were measured based on using a splice-junction array (Affymetrix HJAY).
Project description:Pre-mRNA splicing relies on the still poorly understood dynamic interplay between more than 150 protein components of the Spliceosome, and the steps at which splicing can be regulated remain largely unknown. Here we systematically analyze the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and use this information to reconstruct a network of functional interactions. The network accurately captures well-established physical and functional associations and identifies new, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during Spliceosome assembly. In contrast with standard models of regulation at early events of splice site recognition, factors involved in catalytic activation of the Spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF and on targets of anti-tumor drugs, and can be widely used to identify mechanisms of splicing regulation.
Project description:The investigation of spliceosomal processes is currently a topic of intense research in molecular biology. In the molecular mechanism of alternative splicing, a multi-protein–RNA complex – the spliceosome – plays a crucial role. To understand the biological processes of alternative splicing, it is essential to comprehend the biogenesis of the spliceosome.
In this paper, we propose the first abstract model of the regulatory assembly pathway of the human spliceosomal subunit U1. Using Petri nets, we describe its highly ordered assembly that takes place in a stepwise manner.
Project description:We found that the core spliceosomal proteins RBM17, U2SURP and CHERP form a protein complex regulating alternative splicing and expression of a whole network of RNA binding proteins
Project description:Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD) and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7), we identify hundreds of protein factors that are differentially enriched, revealing unappreciated connections between the Pol II CTD and co-transcriptional processes. These data uncover a novel role for threonine-4 in 3’ end processing through controlling the transition between cleavage and termination. Furthermore, serine-5 phosphorylation seeds spliceosomal assembly immediately downstream of 3’ splice sites through a direct interaction with spliceosomal subcomplex, U1. Strikingly, threonine-4 phosphorylation also impacts splicing through serving as a mark of spliceosomal release and ensuring efficient post-transcriptional splicing genome-wide. Thus, comprehensive Pol II interactomes identify the complex and functional connections between transcription machinery and other gene regulatory complexes.
Project description:Abstract: Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP protein SmB/B’ self-regulates its expression by promoting the inclusion of a highly-conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B’ in human cells results in reduced levels of snRNPs and in a striking reduction in the inclusion levels of hundreds of alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.
Project description:Abstract: Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP protein SmB/B’ self-regulates its expression by promoting the inclusion of a highly-conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B’ in human cells results in reduced levels of snRNPs and in a striking reduction in the inclusion levels of hundreds of alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors. HeLa cells were transfected with a control non-targeting siRNA pool (siNT), or with siRNA pools designed to knockdown SmB/B' or SRSF1 (also known as SF2/ASF/SFRS1). Sequence reads were aligned to exon-exon junction sequences in a database of EST/cDNA-mined cassette-type alternative splicing events. Processed data files (.bed and .txt) provided as supplementary files on the Series record. Processed data file build information: hg18.
Project description:Splicing is a central RNA-based process commonly altered in human cancers; however, how the splicing machinery is co-opted during tumorigenesis remains largely unresolved. Here we identify the splice factor SF3A3 at the nexus of an oncogenic translation program that rewires splicing to promote tumorigenesis. Our results suggest that key spliceosomal networks centered on the essential core U2-associated factor, SF3A3, are exquisitely controlled at the translation level during oncogenic stress. Upon oncogene activation, SF3A3 translation is rapidly enabled via a conserved internal stem-loop structure embedded in the transcript 5’ untranslated region (UTR). Uncoupled SF3A3 translation leads to alternative splicing of several mRNAs involved in mitochondrial dynamics, and induces a metabolic switch that fuels cancer initiation properties in MYC-driven breast tumorigenesis in vivo. Finally, we compelling show that SF3A3 is post-transcriptionally altered and predicts for poor prognosis in aggressive triple negative breast cancers. Together, these findings unveil a highly dynamic regulatory network that interfaces mRNA splicing and translation to orchestrate cancer gene expression networks.
Project description:Splicing is a central RNA-based process commonly altered in human cancers; however, how the splicing machinery is co-opted during tumorigenesis remains largely unresolved. Here we identify the splice factor SF3A3 at the nexus of an oncogenic translation program that rewires splicing to promote tumorigenesis. Our results suggest that key spliceosomal networks centered on the essential core U2-associated factor, SF3A3, are exquisitely controlled at the translation level during oncogenic stress. Upon oncogene activation, SF3A3 translation is rapidly enabled via a conserved internal stem-loop structure embedded in the transcript 5’ untranslated region (UTR). Uncoupled SF3A3 translation leads to alternative splicing of several mRNAs involved in mitochondrial dynamics, and induces a metabolic switch that fuels cancer initiation properties in MYC-driven breast tumorigenesis in vivo. Finally, we compelling show that SF3A3 is post-transcriptionally altered and predicts for poor prognosis in aggressive triple negative breast cancers. Together, these findings unveil a highly dynamic regulatory network that interfaces mRNA splicing and translation to orchestrate cancer gene expression networks.