Project description:Sciatic nerve crush was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from dorsal root ganglia 5 days after injury compared to naïve animals. Results show differences in intrinsic growth responses with normal aging. Total RNA taken from L4 and L5 dorsal root ganglia 5 days after injury 2-month and 24-month old animals at either day 0 or day 5 after sciatic nerve crush injury.
Project description:Here we studied the NOX2 dependent redox-proteome in dorsal root ganglia in mice. The overall goal was to assess the degree of NOX2-dependent changes in oxidised proteins following exposure to enriched enviroment and sciatic nerve axotomy in dorsal root ganglia.
Project description:We used microarrays to distinguish the gene expression differences among different time points after injury. We generated L4-6 dorsal root ganglia (DRG) tissues and proximal sciatic nerve (SN) tissues (0.5cm) at 0d, 1d, 4d, 7d and 14d after sciatic nerve resection.
Project description:We used microarrays to distinguish the gene expression differences among different time points after injury We generated L4-6 dorsal root ganglia (DRG) tissues (0.5cm) at 0.5h, 3h, 6h and 9h after sciatic nerve resection
Project description:In the mammalian peripheral nervous system, axon regeneration occurs spontaneously after injury. We compared the transcriptome profile of male and female dorsal root ganglia to examine if injury responses after sciatic nerve injury is sex-dependent.
Project description:Sciatic nerve crush was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from dorsal root ganglia 5 days after injury compared to naïve animals. Results show differences in intrinsic growth responses with normal aging.
Project description:Axonal regeneration after injury requires active gene transcription. Whether chromatin 3D genome architecture is required for the neuronal regenerative transcriptional programme is unexplored. Here we addressed this question in a model of sciatic nerve injury by combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq in wild-type and cohesin-deficient sensory dorsal root ganglia neurons.
Project description:Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period. We used microarrays to detail the global programme of gene expression underlying the differences in nerve injury between along the postnatal development and identified distinct classes of regulated genes during the injury Experiment Overall Design: We have performed a microarray analysis of the rat L4/L5 dorsal root ganglia, 7 days post spared nerve injury, a model of neuropathic pain. Genes that are regulated in adult rats displaying neuropathic behaviour were compared to those regulated in young rats (10 days old) that did not show the same neuropathic behaviour.