Project description:As a humanized mouse antibody, SM5-1 can target a membrane protein of about 230kDa over-expressed in hepatocellular carcinoma (HCC), melanoma and breast cancer and it has been found to inhibit the progress of tumor cells. In this study, SM5-1 conjugated gold nanoparticles were prepared to study the antitumor efficacy in the treatment of HCC-LM3-fLuc tumor. The results showed that AU-SM5-1 could inhibit HCC-LM3 hepatocellular carcinoma cell proliferation up to 71.26% at the concentration of 0.5mg/ml contrast with SM5-1 and gold nanoparticles. In order to address the mechanism of the antiproliferative effects of AU-SM5-1, we examined the gene expression in HCC-LM3-fLuc tumor cells based on gene-chip screening.
Project description:As a humanized mouse antibody, SM5-1 can target a membrane protein of about 230kDa over-expressed in hepatocellular carcinoma (HCC), melanoma and breast cancer and it has been found to inhibit the progress of tumor cells. In this study, SM5-1 conjugated gold nanoparticles were prepared to study the antitumor efficacy in the treatment of HCC-LM3-fLuc tumor. The results showed that AU-SM5-1 could inhibit HCC-LM3 hepatocellular carcinoma cell proliferation up to 71.26% at the concentration of 0.5mg/ml contrast with SM5-1 and gold nanoparticles. In order to address the mechanism of the antiproliferative effects of AU-SM5-1, we examined the gene expression in HCC-LM3-fLuc tumor cells based on gene-chip screening. The gene chip results showed that some cycle-related and reactive oxygen species (ROS) related genes including up-regulated P21 and down-regulated duox2 and nox1 genes which were validated by real-time quantitative polymerase chain reaction (PCR).
Project description:Combination therapy with anti PD-1 and β -catenin siRNA delivered using biological nanoparticles provide an effective strategy for the treatment of Hepatocellular carcinoma.