Project description:To improve preservation quality of sweet cherry (Prunus avium L.), the effect of ozone (O3) was estimated by label-free quantification proteomics and weighted gene co-expression network analysis (WGCNA).
Project description:The experiment was performed in a commercial sweet cherry (cv. Tsolakeika, Prunus avium L.) orchard in North Greece (Edessa) during 2017 growing season. The orchard contained 10-years old trees, planted at 5x5 m spacing between rows and along the row, grafted onto Mahaleb cherry (Prunus mahaleb L.) rootstock, trained in open vase and subjected to standard cultural practices. Three foliar sprays (0.5% or 35 mM CaCl2) were performed at 15, 27 and 37 days after full blossom (DAFB). Cherry fruits (exocarp plus mesocarp tissues) were sampled in two developmental stages, namely at full red color (44 DAFB, S4 stage) and at commercial harvest (55 DAFB, S5 stage). Three biological replicates of 20-fruit sub-lots in control and Ca-treated fruits were frozen in liquid nitrogen, grinding in fine powder and stored at -80 ⁰C for proteomic processing.
Project description:Bud dormancy is a crucial stage in perennial trees and allows survival over winter and optimal subsequent flowering and fruit production. Environmental conditions, and in particular temperature, have been shown to influence bud dormancy. Recent work highlighted some physiological and molecular events happening during bud dormancy in trees. However, we still lack a global understanding of transcriptional changes happening during bud dormancy. We conducted a fine tune temporal transcriptomic analysis of sweet cherry (Prunus avium L.) flower buds from bud organogenesis until the end of bud dormancy using next-generation sequencing. We observe that buds in organogenesis, paradormancy, endodormancy and ecodormancy are characterised by distinct transcriptional states, and associated with different pathways. We further identified that endodormancy can be separated in two phases based on its transcriptomic state: early and late endodormancy. We also found that transcriptional profiles of just 7 genes are enough to predict the main cherry tree flower buds dormancy stages. Our results indicate that transcriptional changes happening during dormancy are robust and conserved between different sweet cherry cultivars. Our work also sets the stage for the development of a fast and cost effective diagnostic tool to molecularly define the flower bud stage in cherry trees.
Project description:The rapid development of Prunus pseudocerasus related industry has increasingly contributed to rural vitalization in China. This study employed a biomod2 ensemble model, utilizing environmental and species occurrence data from 151 P. pseudocerasus germplasm wild/local samples, to predict potential geographical distribution, suitability changes, climate dependence, and ecological niche dynamics. The optimized maximum entropy (MaxEnt) model yielded the most accurate predictions. The climate variables with the greatest impact on suitability were precipitation of warmest quarter and mean diurnal temperature range. The total potential suitable area for P. pseudocerasus was approximately 2.78 × 106 km2, increasing with CO2 concentration. The highly suitable area was primarily concentrated in basin terrains, plateaus, and plains of Sichuan Province. The current centroid in Lichuan exhibited gradual latitudinal and longitudinal movement. The predicted (2090s) ecological niche trends of P. pseudocerasus varied under different pathways and periods, with higher CO2 concentration associated with lower niche overlap. The CO2 emission concentration in the SSP246 scenario emerged as the most suitable climate model. Climate change is driving both the expansion of geographical distribution and the contraction of overlapping geographical distribution areas of P. pseudocerasus. These findings provide a theoretical basis for wild resource conservation, site selection for production, and introduction of allopatry for P. pseudocerasus.
Project description:We have sequenced a wild Prunus mume and constructed a reference sequence for this genome. In order to improve quality of gene models, RNA samples of five tissues (bud, leaf, root, stem, fruit) were extracted from the Prunus mume. To investigate tissue specific expression using the reference genome assembly and annotated genes, we extracted RNA samples of different tissues and conducted transcriptome sequencing and DEG analysis. Five RNA pools were created corresponding to different tissues of the Prunus mume.