Project description:In order to cause disease, the food- and water-borne pathogen Campylobacter jejuni must face the extreme acidity of the host stomach as well as cope with pH fluctuations in the intestine. In the present study, C. jejuni NCTC 11168 was grown under mild acidic conditions mimicking those encountered in the intestine. The resulting transcriptional profiles revealed how this bacterium fine-tunes gene expression in response to acid stress. This adaptation involves differential expression of respiratory pathways, induction of genes for phosphate transport and repression of energy generation and intermediary metabolism genes. Keywords: acid shock; dose response; transcriptional response to 3 mild-acidic pH growth conditions (pH6.5, pH 6.0 and pH5.0)
Project description:Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. For pathogen control in the food industry, the use of natural antimicrobial molecules is a promising strategy to avoid antibiotic treatments. Isothiocyanates are natural antimicrobial compounds which also display anti-cancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzylisothiocyanate (BITC) by both transcriptomic and physiological (respirometry, ATP content measurements and isolations of aggregated proteins).
Project description:Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is caused by consumption of contaminated water. Some C. jejuni isolates are better than others at surviving in water, which suggests that these strains are better adapted to transmission by water than others. The aim of this study is to investigate this phenomenon further. CFU counts and viability assays showed that strain 81116 survives better than strain 81-176 in a defined freshwater medium at 4°C. Comparative transcriptomic profiling using microarray revealed that these strains respond differently to water. This series presents the transcriptome of strain 81116 in water.