Project description:We performed RT-PCR panels analysis of microRNAs expression in exosomes from the serum of wt mice, cold exposed mice or beta3 Adrenergic receptor agonist (CL-316.243) treated mice, and in exosomes from culture medium of mature brown adipocytes with or without cAMP treatment. Several microRNAs were identified as indicator correlated to brown adipocytes activity. The selected microRNAs may become potential biomarkers of brown fat activation in vivo
Project description:We performed a genome-wide deep sequencing analysis of the microRNAs abundant in mesenchymal stem cells (MSCs) derived from murine brown adipose tissue and in in vitro differentiated mature brown adipocytes. Several microRNAs were identified as differentially regulated when comparing datasets from MSCs vs. mature fat cells. These microRNAs may have an implication in the regulation of adipogenesis as well as thermogenesis in brown adipose tissue (BAT). Examination of BAT-derived MSCs (BAT-MSC; 1 sample) and in vitro differentiated mature brown fat cells (BAT-DIFF; 1 sample) vertis biotechnologie AG, D-85354 Freising, Germany (library construction and sequencing)
Project description:We performed a genome-wide deep sequencing analysis of the microRNAs abundant in mesenchymal stem cells (MSCs) derived from murine brown adipose tissue and in in vitro differentiated mature brown adipocytes. Several microRNAs were identified as differentially regulated when comparing datasets from MSCs vs. mature fat cells. These microRNAs may have an implication in the regulation of adipogenesis as well as thermogenesis in brown adipose tissue (BAT).
Project description:Brown adipose tissue is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs as essential regulators of brown adipocyte differentiation, but it remains unknown whether microRNAs are required for the feature maintenance of mature brown adipocytes. To address this question, we ablated Dgcr8, a key regulator of the microRNA biogenesis pathway, in mature brown as well as white adipocytes. The adipose tissue -specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat, and the mice were intolerant to cold exposure. In vitro primary brown adipocyte cultures confirmed that microRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that microRNAs are essential for the browning of subcutaneous white adipocyte both in vitro and in vivo. Using this animal model, we performed microRNA expression profiling analysis and identified a set of BAT-specific microRNAs that are up-regulated during brown adipocyte differentiation and enriched in brown fat compared to other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of microRNAs in the maintenance as well as the differentiation of brown adipocytes.
Project description:Brown adipose tissue is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs as essential regulators of brown adipocyte differentiation, but it remains unknown whether microRNAs are required for the feature maintenance of mature brown adipocytes. To address this question, we ablated Dgcr8, a key regulator of the microRNA biogenesis pathway, in mature brown as well as white adipocytes. The adipose tissue -specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat, and the mice were intolerant to cold exposure. In vitro primary brown adipocyte cultures confirmed that microRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that microRNAs are essential for the browning of subcutaneous white adipocyte both in vitro and in vivo. Using this animal model, we performed microRNA expression profiling analysis and identified a set of BAT-specific microRNAs that are up-regulated during brown adipocyte differentiation and enriched in brown fat compared to other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of microRNAs in the maintenance as well as the differentiation of brown adipocytes. TotalRNAs were extracted using a Qiagen kit, and 5 M-NM-<g of total RNAs for each sample were used to prepare the mRNA- Seq library according to the manufacturerM-bM-^@M-^Ys instruction (NEB). cDNA libraries were prepared and sequenced by Hi-seq in Whitehead Genome Core. 2 replicates of each treatment were analyzed.
Project description:We report the RNA expression of the mature brown fat from 6 week old wild type (WT) and PHOSPHO1 knockout (KO) mice. Mature brown fat was isolated from brown adipose tissue after collagenase digestion. Increased expression of mitochondrial genes is found in KO brown fat.
Project description:To investigate the specific role of PGC-1 coactivators in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1alpha. We could then efficiently knockdown PGC-1beta expression by shRNA expression. Loss of PGC-1alpha did not alter brown fat differentiation but severly reduced the induction of thermogenic genes. In order to assess the specific requirement for PGC-1± in the global transcriptional response to cAMP, we used Affymetrix arrays to compare the sets of genes induced in response to a 4 hr dbcAMP treatment in differentiated wt and KO cells. This analysis revealed that 88 genes were induced more than 3-fold in the wt cells; of these, 54 (61% of total) were similarly increased in both wt and KO. However, 28 genes (32% of total) were decreased by at least 50% in the KO cells compared to wt cells. These data were confirmed by quantitative PCR for a subset of genes. These data indicate that PGC-1± is required for proper expression of approximately one third of the genes induced in response to cAMP in brown fat cells, but this set of sensitive genes is enriched in those involved in adaptative thermogenesis. Experiment Overall Design: WT and PGC-1alpha KO brown preadipocytes were differentiated into mature brown adipocytes for seven days. Cells were then treated with dibutyryl cAMP for four hours. Two replicates were made for each condition: WT non treated, WT treated with cAMP, KO non treated, KO treated with cAMP. Transcription profiling of wild type and PGC-1 alpha knockout mouse mature brown adipocytes treated with dibutyryl cAMP to investigate the specific role of PGC-1 coactivators in brown fat cells
Project description:We performed ChIP-seq to chart genome-wide maps of H3K27me3 in brown preadipocytes and mature brown adipocytes. We observed a subset of brown fat-specific genes, but not common fat genes or white fat-specific genes, possess the H3K27me3 mark in preadipocytes, and this mark is erased in mature adipocytes.
Project description:We performed ChIP-seq to chart genome-wide maps of H3K27me3 in brown preadipocytes and mature brown adipocytes. We observed a subset of brown fat-specific genes, but not common fat genes or white fat-specific genes, possess the H3K27me3 mark in preadipocytes, and this mark is erased in mature adipocytes. H3K27me3 ChIP-seq in brown preadipocytes and mature adipocytes.