ABSTRACT: Effect of Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Exposure on Intragraft Gene Expression of Kidney Transplant Patients
Project description:Transcription profiling by array of kidney transplant patients after the exposure to angiontensin converting enzyme inhinitor or angiotensin receptor blocker
Project description:Treatment with angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) has been shown to have anti-inflammatory effects such as decreased growth factors and cytokines in animal models, this effect however, has not been investigated in kidney transplant recipients. We aimed to study the effect of ACEI or ARB treatment on intragraft gene expression profiles of transplant kidney biopsies using microarrays. Both groups had similar demographic characteristics in terms of age, race, sex, type of transplant, previous history of transplantation or acute rejection, panel reactive antibody levels, and immunosuppressive treatment. There were no differences in acute and chronic Banff allograft injury scores between the 2 Groups. Intragraft gene expression profiles of ACEI or ARB treated Group 2 biopsies showed decreased gene transcripts of interferon-gamma and rejection-associated transcripts (GRIT) and constitutive macrophage-associated transcripts (CMAT) compared to Group 1 biopsies. There were no statistically significant differences in expression of cytotoxic T cell (CAT), regulatory T cell (TREG), B-cell (BAT), natural killer cell (NKAT), or endothelial cell-associated transcripts (ENDAT) between the 2 Groups. Our data suggest that exposure to ACEI or ARB was associated with down-regulation of GRIT and CMAT. This anti-inflammatory effect of ACEI or ARB treatment could be an additional benefit in kidney transplant recipients. We identified 29 near normal biopsies with chronic sum allograft injury score (ct+ci+cv) ⤠3 for gene expression profiling comparing 2 groups; Group 1 (n=16), patients with no exposure of ACEI or ARB treatment and Group 2 patients (n=13) with exposure to ACEI or ARB at least 6 months prior to kidney biopsy. Biopsies with a diagnosis of acute or chronic rejection, recurrent or de novo glomerular disease, or polyoma nephropathy were excluded.
Project description:Treatment with angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) has been shown to have anti-inflammatory effects such as decreased growth factors and cytokines in animal models, this effect however, has not been investigated in kidney transplant recipients. We aimed to study the effect of ACEI or ARB treatment on intragraft gene expression profiles of transplant kidney biopsies using microarrays. Both groups had similar demographic characteristics in terms of age, race, sex, type of transplant, previous history of transplantation or acute rejection, panel reactive antibody levels, and immunosuppressive treatment. There were no differences in acute and chronic Banff allograft injury scores between the 2 Groups. Intragraft gene expression profiles of ACEI or ARB treated Group 2 biopsies showed decreased gene transcripts of interferon-gamma and rejection-associated transcripts (GRIT) and constitutive macrophage-associated transcripts (CMAT) compared to Group 1 biopsies. There were no statistically significant differences in expression of cytotoxic T cell (CAT), regulatory T cell (TREG), B-cell (BAT), natural killer cell (NKAT), or endothelial cell-associated transcripts (ENDAT) between the 2 Groups. Our data suggest that exposure to ACEI or ARB was associated with down-regulation of GRIT and CMAT. This anti-inflammatory effect of ACEI or ARB treatment could be an additional benefit in kidney transplant recipients.
Project description:To unravel antihypertensive drug-induced gene expression changes that are potentially related to the amelioration of end-organ damages, we performed in vivo phenotypic evaluation and transcriptomic analysis on the heart and the kidney, with administration of antihypertensive drugs to two inbred strains of (i.e., hypertensive and normotensive) rats. We chose to use six antihypertensive classes: enalapril (angiotensin converting enzyme inhibitor), candesartan (angiotensin receptor blocker), hydrochlorothiazide (diuretics), amlodipine (calcium-channel blocker), carvedilol (vasodilating beta-blocker) and hydralazine. In the tested rat strains, four of six drugs, including two renin-angiotensin system (RAS) inhibitors, were effective for BP lowering, whereas the remaining two drugs were not. Besides BP lowering, there appeared to be some inter-drug heterogeneity in phenotypic changes, such as suppressed body weight (Bw) gain and Bw-adjusted heart weight reduction. For the transcriptomic response, a considerable number of genes showed prominent mRNA expression changes either in a BP-dependent or BP-independent manner with substantial diversity between the target organs. Noticeable changes of mRNA expression were induced particularly by RAS blockade, e.g., for genes in the natriuretic peptide system (Nppb and Corin) in the heart and for those in the RAS/ kallikrein-kinin system (Ren and rat Klk1 paralogs) and those related to calcium ion binding (Calb1 and Slc8a1) in the kidney. This submission includes the kidney data.
Project description:To unravel antihypertensive drug-induced gene expression changes that are potentially related to the amelioration of end-organ damages, we performed in vivo phenotypic evaluation and transcriptomic analysis on the heart and the kidney, with administration of antihypertensive drugs to two inbred strains of (i.e., hypertensive and normotensive) rats. We chose to use six antihypertensive classes: enalapril (angiotensin converting enzyme inhibitor), candesartan (angiotensin receptor blocker), hydrochlorothiazide (diuretics), amlodipine (calcium-channel blocker), carvedilol (vasodilating -blocker) and hydralazine. In the tested rat strains, four of six drugs, including two renin-angiotensin system (RAS) inhibitors, were effective for BP lowering, whereas the remaining two drugs were not. Besides BP lowering, there appeared to be some inter-drug heterogeneity in phenotypic changes, such as suppressed body weight (Bw) gain and Bw-adjusted heart weight reduction. For the transcriptomic response, a considerable number of genes showed prominent mRNA expression changes either in a BP-dependent or BP-independent manner with substantial diversity between the target organs. Noticeable changes of mRNA expression were induced particularly by RAS blockade, e.g., for genes in the natriuretic peptide system (Nppb and Corin) in the heart and for those in the RAS/ kallikrein-kinin system (Ren and rat Klk1 paralogs) and those related to calcium ion binding (Calb1 and Slc8a1) in the kidney. The heart data comprises of this submission and part of E-MTAB-9244.
Project description:To unravel antihypertensive drug-induced gene expression changes that are potentially related to the amelioration of end-organ damages, we performed in vivo phenotypic evaluation and transcriptomic analysis on the heart and the kidney, with administration of antihypertensive drugs to two inbred strains of (i.e., hypertensive and normotensive) rats. We chose to use six antihypertensive classes: enalapril (angiotensin converting enzyme inhibitor), candesartan (angiotensin receptor blocker), hydrochlorothiazide (diuretics), amlodipine (calcium-channel blocker), carvedilol (vasodilating beta-blocker) and hydralazine. In the tested rat strains, four of six drugs, including two renin-angiotensin system (RAS) inhibitors, were effective for BP lowering, whereas the remaining two drugs were not. Besides BP lowering, there appeared to be some inter-drug heterogeneity in phenotypic changes, such as suppressed body weight (Bw) gain and Bw-adjusted heart weight reduction. For the transcriptomic response, a considerable number of genes showed prominent mRNA expression changes either in a BP-dependent or BP-independent manner with substantial diversity between the target organs. Noticeable changes of mRNA expression were induced particularly by RAS blockade, e.g., for genes in the natriuretic peptide system (Nppb and Corin) in the heart and for those in the RAS/ kallikrein-kinin system (Ren and rat Klk1 paralogs) and those related to calcium ion binding (Calb1 and Slc8a1) in the kidney. This submission includes the kidney data.
Project description:To unravel antihypertensive drug-induced gene expression changes that are potentially related to the amelioration of end-organ damages, we performed in vivo phenotypic evaluation and transcriptomic analysis on the heart and the kidney, with administration of antihypertensive drugs to two inbred strains of (i.e., hypertensive and normotensive) rats. We chose to use six antihypertensive classes: enalapril (angiotensin converting enzyme inhibitor), candesartan (angiotensin receptor blocker), hydrochlorothiazide (diuretics), amlodipine (calcium-channel blocker), carvedilol (vasodilating beta-blocker) and hydralazine. In the tested rat strains, four of six drugs, including two renin-angiotensin system (RAS) inhibitors, were effective for BP lowering, whereas the remaining two drugs were not. Besides BP lowering, there appeared to be some inter-drug heterogeneity in phenotypic changes, such as suppressed body weight (Bw) gain and Bw-adjusted heart weight reduction. For the transcriptomic response, a considerable number of genes showed prominent mRNA expression changes either in a BP-dependent or BP-independent manner with substantial diversity between the target organs. Noticeable changes of mRNA expression were induced particularly by RAS blockade, e.g., for genes in the natriuretic peptide system (Nppb and Corin) in the heart and for those in the RAS/ kallikrein-kinin system (Ren and rat Klk1 paralogs) and those related to calcium ion binding (Calb1 and Slc8a1) in the kidney. The heart data comprises of this submission and part of ArrayExpress E-MTAB-9244.
Project description:Rationale: The molecular underpinnings of heart failure with reduced ejection fraction (HFrEF) involves a complex remodeling of the contractile, metabolic and electrical functions. Current pharmacotherapy for patients presenting HFrEF includes combination of angiotensin-converting enzyme inhibitors (ACEi) and β-adrenergic receptor blockers (β-AR blockers). Yet, a knowledge gap exists regarding the molecular changes accompanying such treatment. Objective: The present study takes an omics approach to study protein and phosphorylation signaling derangement in HFrEF and to define the global changes resulting from treatment with β-AR blocker (metoprolol) and ACE inhibitor (enalapril) in control- and HFrEF hearts.