Project description:To investigate the artemisinin resistance mechanism, we conducted a systematical evaluation of histone acetyltransferase expression in 45 cloned P. falciparum parasites and 30 wild-type field isolates. Remarkably, PfMYST, a member of the histone acetyltransferase MYST family, emerged as the sole candidate significantly associated with prolonged ring-survive of parasites. CHIP-seq analysis revealed PfMYST’s pivotal role in mediating histone modifications, particularly in H4K5ac and H4K8ac, within the P. falciparum genome. Through single-cell RNA sequence and conditional knockdown approaches, we identified and functionally validated PfMYST-targeted genes contributing to Plasmodium’s adaptive artemisinin resistance.
Project description:To investigate the artemisinin resistance mechanism, we conducted a systematical evaluation of histone acetyltransferase expression in 45 cloned P. falciparum parasites and 30 wild-type field isolates. Remarkably, PfMYST, a member of the histone acetyltransferase MYST family, emerged as the sole candidate significantly associated with prolonged ring-survive of parasites. CHIP-seq analysis revealed PfMYST’s pivotal role in mediating histone modifications, particularly in H4K5ac and H4K8ac, within the P. falciparum genome. Through single-cell RNA sequence and conditional knockdown approaches, we identified and functionally validated PfMYST-targeted genes contributing to Plasmodium’s adaptive artemisinin resistance.
Project description:Study of chromatin changes of P. falciparum in response to changes in the levels of histone H4 acetylations especially H4K8ac using chromatin immunoprecipitation coupled to microarray chip (ChIP-on-chip)
Project description:To investigate the artemisinin resistance mechanism, we conducted a systematical evaluation of histone acetyltransferase expression in 45 cloned P. falciparum parasites and 30 wild-type field isolates. Remarkably, PfMYST, a member of the histone acetyltransferase MYST family, emerged as the sole candidate significantly associated with prolonged ring-survive of parasites. WGS analysis confirmed the genomic consistency among different parasite subclones. CHIP-seq analysis revealed PfMYST’s pivotal role in mediating histone modifications, particularly in H4K5ac and H4K8ac, within the P. falciparum genome. Through single-cell RNA sequence and conditional knockdown approaches, we identified and functionally validated PfMYST-targeted genes contributing to Plasmodium’s adaptive artemisinin resistance.