Project description:The aim of this study was to analyze the gene expression profile for three main cell lines (supporting, interstitial/stromal, and germ cells) isolated from developing gonads at the critical period of sexual differentiation (between 11.5, and 13.5 dpc). Three cell lines (supporting, interstitial/stromal, and germ cells) were isolated from murine fetal XX and XY gonads at three time points (11.5, 12.5, and 13.5 dpc). Transgenic mouse strains with the expression of cell type specific fluorescent markers were used to isolate the cell lines. Cells were sorted using FACS method and then the RNA was extracted.
Project description:The aim of this study was to analyze the gene expression profile for three main cell lines (supporting, interstitial/stromal, and germ cells) isolated from developing gonads at the critical period of sexual differentiation (between 11.5, and 13.5 dpc).
Project description:The aim of this study was to analyze the gene expression profile for three main cell lines (supporting, interstitial/stromal, and germ cells) isolated from developing gonads during the process of the testis cord and ovarian cyst formation (between TS13 and TS34).
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The goal of this study is to determine the complete gene expression profile for each cell type of the developing gonad during the critical window in which it adopts the testis or ovarian fate. Transgenic mice with cell type specific fluorescent markers were used to isolate germ cells, supporting cells, interstitial cells (including steroidogenic precursors), and endothelial cells in the developing testis and ovary. The gonads were dissociated in trypsin, and the fluorescent cells were isolated by FACS. The RNA was collected from the isolated cells and their gene expression profiles were determined by microarray analysis.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.