Project description:The aim of this project was to evaluate the ploidy of a S. cerevisiae *S. kudriavzevii hybrid in comparison to the lab strain S288C. Other wine yeast have been icluded in the project for the global analysis.
Project description:The aim of this study is to phenotype a collection of 27 S. cerevisiae commercial wine strains growing within temperatures (4-45ºC) in both minimal media (SD) and synthetic must (SM) and, taking into account µmax value, to select two strains with divergent phenotype in their capacity to grow at low temperature. To confirm this differential phenotype, we design a competition between both strains during wine fermentations. As expected, at low temperature fermentation, the strain showing a good performance out-competes to the strain growing badly in cold. Finally we aimed to decipher the molecular basis underlying this divergent phenotype by analyzing the genomic, proteomic and transcriptomic differences between both strains at low temperature (15ºC) and optimum temperature (28ºC).
Project description:Experience 2: 59A vs. 59A NADH Bdh200 mM, 59A NADPH Bdh200mM and 59A NADPH Bdh300 mM Analysis used RNA samples of three replicates by strain extracted from cells harvested at mid-exponential phase of wine fermentation
Project description:By an evolutionary approach based on long-term culture on gluconate as the sole carbon source, a Saccharomyces cerevisiae wine strains with enhanced flux through the pentose phosphate (PP) pathway were obtained. One of these evolved strains, ECA5, exhibited several novel properties with great potential for wine making, including a higher than wild-type fermentation rate and altered production of acetate and aroma compounds. To describe the mechanisms underlying this complex phenotype, we performed a comparative analysis of transcriptomic profiles between ECA5 and its ancestral strain, EC1118, under low nitrogen, wine fermentation conditions.
Project description:To characterize the ecological interactions among S. cerevisiae strains coming from the same geographical area, we examined the fitness of two natural isolates from San Giovese grapes, alone or in competition, in synthetic wine must (SWM). We performed genome-wide analyses in order to identify the genes involved in yeast competition and cooperation.
Project description:Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The selection of a yeast strain simultaneously overproducing mannoproteins and showing good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae x Saccharomyces cerevisiae hybrid bearing the two oenologically relevant features was constructed and a reduction in the amount of bentonite necessary for wine stabilization was observed for wines fermented with the generated strain. Additionally, different copy numbers of some genes probably related with these physiological features were detected in this hybrid. Hybrid share with parental Sc1 similar copy number of genes SPR1, SWP1, MNN10 and YPS7 related to cell wall integrity and with parental Sc2 similar copy number of some glycolytic genes as GPM1 and HXK1 as well as genes involved in hexose transport as HXT9, HXT11 and HXT12. This work demonstrates that artificial hybridization and stabilization in winemaking conditions constitute an effective approach to obtain yeast strains with desirable physiological features as mannoprotein overproducing capacity and improved fermentation performance, characteristics genetically depending on the coordinated expression of a multitude of different genes. In this work, genetically stable mannoprotein overproducing Saccharomyces cerevisiae strains simultaneously showing excellent fermentation capacities were obtained by hybridization methods giving rise to non-GMO strains. The potential relationship between the copy number of specific genes and the improved features was also evaluated by means of aCGH analysis of parental and hybrid strains.
Project description:In this study, we present an investigation of the yeast response to the exposure to octanoic and decanoic acids, two major fermentation inhibitors. Aerobically grown cells of Saccharomyces cerevisiae U13 wine strain have been exposed to 0,05 mM of octanoic and decanoic acid. We have compared the variations of expression induced by the acid challenges in comparison to a reference non trated modality, as well as the two acid responses. The transcriptome analysis is build in a triangular design in which the RNA extracted from three modalities : reference (non treated cells) , cells exposed to octanoic acid, and cells exposed to decanoic acid are compared.
Project description:In order to asses yeast EC1118® strain expression changes during wine alcoholic fermentation triggered by various nutrient starvations, this experiment describes the gene expression under micronutrient starvations that lead to yeast cell death (oleic acid starvation, ergosterol starvation, pantothenic acid starvation and nicotinic starvation) or allow the maintenance of yeast viability (nitrogen starvation).