Project description:To determine the gene expression profile of extensor digitorum longus (EDL) and soleus (SO) muscles of wild-type and Ts1Cje mouse model of Down Syndrome (DS). Two types of skeletal muscles (EDL and SO) were harvested from both Ts1Cje and its disomic littermate.
Project description:The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. The mouse model develops various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points; postnatal day (P)1, P15, P30 and P84. RNA was extracted from thre brain regions (Cerebral cortex, hippocampus and cerebellum) for hybridization to arrays from 3 pairs of Ts1Cje and disomic C57BL/6 littermate control for each timepoints at postnatal (P) day 1, P15, P30 and P84.
Project description:Down syndrome is the most common form of genetic mental retardation. How Trisomy 21 causes mental retardation remains unclear and its effects on adult neurogenesis have not been addressed. To gain insight into the mechanisms causing mental retardation we used microarrays to investigate gene expression differences between Ts1Cje (a mouse model of Down syndrome) and C57BL/6 littermate control neurospheres. The neurospheres were generated from neural stem cells and progenitors isolated from the lateral walls of the lateral ventricles from adult mice. RNA was extracted for hybridization to arrays from 3 pairs of Ts1Cje and disomic C57BL/6 littermate control 7-day old adult neurosphere cultures.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:We analyzed the functional role of DOR (Diabetes and Obesity Regulated gene) (also named Tp53inp2) in skeletal muscle. We show that DOR has a direct impact on skeletal muscle mass in vivo. Thus, using different transgenic mouse models, we demonstrate that while muscle-specific DOR gain-of-function results in reduced muscle mass, loss-of-function causes muscle hypertrophy. DOR has been described as a protein with two different functions, i.e., a nuclear coactivator and an autophagy regulator (Baumgartner et. al., PLoS One, 2007; Francis et. al., Curr Biol, 2010; Mauvezin et. al., EMBO Rep, 2010; Nowak et. al., Mol Biol Cell, 2009). This is why we decided to analyze which of these two functions could explain the phenotype observed in our mice models. In this regard, we performed a transcriptomic analysis using microarrays looking for genes differentially expressed in the quadriceps muscle of WT and SKM-Tg mice as well as in C and SKM-KO animals. Surprisingly, only a reduced number of genes were dysregulated upon DOR manipulation and most of the genes underwent mild changes in expression. These data strongly suggest that DOR does not operate as a nuclear co-factor in mouse skeletal muscle under the conditions subjected to study. In contrast, DOR enhances basal autophagy in skeletal muscle and promotes muscle wasting when autophagy is a contributor to muscle loss. To determine the functional role of DOR in skeletal muscle, we generated transgenic mice (SKM-Tg) overexpressing DOR specifically in skeletal muscle under the Myosin-Light Chain 1 promoter/enhancer. The open reading frame of DOR was introduced in an EcoRI site in the MDAF2 vector, which contains a 1.5 kb fragment of the MLC1 promoter and 0.9 kb fragment of the MLC1/3 gene containing a 3' muscle enhancer element (Rosenthal et. al., PNAS, 1989; Otaegui et. al., FASEB J, 2003). The fragment obtained after the digestion of this construct with BssHII was the one used to generate both transgenic mouse lines. Nontransgenic littermates were used as controls for the transgenic animals (Wt). In addition, a muscle-specific DOR knock-out mouse line (SKM-KO) was also generated by crossing homozygous DOR loxP/loxP mice with a mouse strain expressing Cre recombinase under the control of the Myosin-Light Chain 1 promoter (Bothe et. al., Genesis, 2000). Deletion of exons 3 and 4 driven by Cre recombinase caused the ablation of DOR expression. Non-expressing Cre DOR loxP/loxP littermates were used as controls for knockout animals (C). Four-month-old male mice were used in all experiments. Mice were in a C57BL/6J pure genetic background. We used microarrays to analyze the effect of DOR gain-of-function and DOR ablation on skeletal muscle gene expression Total RNA from quadriceps muscles from 4-month-old male mice was extracted and used for hibridization on Affimetrix microarrays
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)