Project description:Long noncoding RNAs (lncRNAs) are emerging as important regulators in cellular processes and have been showed to be involved in the occurrence and development of various neurodegenerative diseases including glaucoma. The aim of this study is to reveal disease-related extracellular lncRNAs and message RNAs (mRNAs) in aqueous humor (AH) of individual primary open-angle glaucoma (POAG) patients, to determine the potential biomarkers for POAG diagnosis
Project description:To better understand the molecular changes in the aqueous humor (AH) content with glaucoma, we analyzed the microRNA (miRNA) profiles of AH samples from patients with Primary Open Angle Glaucoma (POAG) and Exfoliation Glaucoma (XFG) compared to non-glaucoma controls.
Project description:TGF-beta levels are known to increase in the aqueous humor of eye cells in patients with glaucoma. Increase TGF-beta is assumed to have a biochemical impact on the trabecular meshwork, and an increase in extracellular matrix formation, which may be responsible for decrease outflow facility of the eye. This may increase extracellular pressure, causing glaucoma. TGF-beta 1 may be the cause of abnormal accumulation of extracellular matrices in trabecular meshwork of eyes with primary open angle glaucoma. Transforming growth factor (TGF)-beta2 regulates the expression of proteoglycans in aqueous humor from human glaucomatous eyes. To identify gene expression changes as a result of TGF-beta1 and 2 treatment of human trabecular meshwork cells. We expect to see a change in expression of the proteoglycans in HTM cells as a response to TGF-beta treatment. Human Trabecular Meswork cells in the eye were bathed by aqueous humor. TM cells were removed from individuals with the following ages: 16,66,67,73, and 76. Each individual was treated with EtOH (control), TGF-beta1, or TGF-beta2. Total RNA from each individual was pooled for each chip. Technical replicates were created for each treatment type, for a total of 6 chips.
Project description:TGF-beta levels are known to increase in the aqueous humor of eye cells in patients with glaucoma. Increase TGF-beta is assumed to have a biochemical impact on the trabecular meshwork, and an increase in extracellular matrix formation, which may be responsible for decrease outflow facility of the eye. This may increase extracellular pressure, causing glaucoma. TGF-beta 1 may be the cause of abnormal accumulation of extracellular matrices in trabecular meshwork of eyes with primary open angle glaucoma. Transforming growth factor (TGF)-beta2 regulates the expression of proteoglycans in aqueous humor from human glaucomatous eyes. To identify gene expression changes as a result of TGF-beta1 and 2 treatment of human trabecular meshwork cells. We expect to see a change in expression of the proteoglycans in HTM cells as a response to TGF-beta treatment. Human Trabecular Meswork cells in the eye were bathed by aqueous humor. TM cells were removed from individuals with the following ages: 16,66,67,73, and 76. Each individual was treated with EtOH (control), TGF-beta1, or TGF-beta2. Total RNA from each individual was pooled for each chip. Technical replicates were created for each treatment type, for a total of 6 chips. Keywords: dose response
Project description:Globally, irreversible vision loss is mainly attributed to glaucoma, a complex eye condition. Given that the progression of glaucoma is challenging to detect and track, and reliable predictive markers are lacking, there is an urgent need for biomarkers. In this context, the aqueous humor, which is part of the anterior segment of the eye, assumes a critical role. The aim of this study is to develop a comprehensive database for glaucoma research by analyzing primary open-angle glaucoma (POAG) human aqueous humor samples (n=66). We employ advanced label-free quantitative proteomics to investigate the proteome associated with glaucoma in human aqueous humor. Our dataset, generated using the TimsTOF™ Pro Bruker mass spectrometer and DIA-NN bioinformatics for library-independent quantification of data-independent acquisition (DIA) proteomics, offers researchers access to the most extensive catalog of human aqueous humor proteins reported to date. This resource is expected to deepen our understanding of the proteomic profiles in human glaucoma aqueous humor and also support investigations into proteomes related to other ocular conditions.
Project description:Long non-coding RNAs were associated with the development and progression of glaucoma. Our study aim to identify the potential genes in human trabecular meshwork related to primary open-angle glaucoma (POAG).
Project description:Comparative evaluation of the aqueous humor proteome of primary angle closure and primary open angle glaucomas and senile cataract eyes
Project description:Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated contractile activity, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active RhoA (RhoAV14). Organ cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 revealed strong contractile cell morphology, increased actin stress fibers and focal adhesions, along with increased levels of phosphorylated myosin II, and collagen IV, fibronectin and laminin. cDNA microarray analysis of RNA extracted from RhoAV14 expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of myosin II, paxillin and focal adhesion kinase, and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the contractile force, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells. Keywords: Gene Expression Two condition experiment: Human trabecular mesh work cells infected with Adenivirus expressing GFP Vs Adenovirus expressing GFP and constitutively active RhoAV14