Project description:Analysis of SCC-9 tongue cancer cells overexpressing miR-585-5p. miR-585-5p is frequently downregulated in primary tongue cancer. Results provide insight into the role of miR-585-5p in the pathogenesis of tongue cancer. We used micorarrays to detailed the genes regulated by miR-585-5p in SCC-9 cells.
Project description:MiRNAs have been shown to alter both protein expression and secretion in different cellular contexts. By combining in vitro, in vivo and in silico techniques, we demonstrated that overexpression of pre-miR-1307 reduced the ability of breast cancer cells to induce endothelial cell sprouting and angiogenesis. However, the molecular mechanism behind this and the effect of the individual mature miRNAs derived from pre-miR-1307 on protein secretion and is largely unknown. Here, we overexpressed miR-1307-3p|0, -3p|1 and 5p|0 in MDA-MB-231 breast cancer cells and assessed the impact of miRNA overexpression on protein secretion by Mass Spectrometry. Unsupervised hierarchical clustering revealed a distinct phenotype induced by overexpression of miR-1307-5p|0 compared to the controls and to the 5’isomiRs derived from the 3p-arm. Together, our results suggest different impacts of miR-1307-3p and miR-1307-5p on protein secretion which is in line with our in vitro observation that miR-1307-5p, but not the isomiRs derived from the 3p-arm reduce endothelial cell sprouting in vitro. Hence these data support the hypothesis that miR-1307-5p is at least partly responsible for impaired vasculature in tumors overexpressing pre-miR-1307.
Project description:Analysis of SCC-15 tongue cancer cells overexpressing miR-611. miR-611 is frequently upregulated in primary tongue cancer. Results provide insight into the role of miR-611 in the pathogenesis of tongue cancer. We used micorarrays to detailed the genes regulated by miR-611 in SCC-15 cells.
Project description:Analysis of SCC-15 tongue cancer cells overexpressing miR-762. miR-762 is frequently upregulated in primary tongue cancer. Results provide insight into the role of miR-762 in the pathogenesis of tongue cancer. We used micorarrays to detailed the genes regulated by miR-762 in SCC-15 cells.
Project description:This is a prospective-retrospective study to determine if the expression of the miRNA’s miR-31-3p and miR-31-5p are prognostic of patient outcomes or predictive of the benefit from anti-EGFR therapy in stage III Colon Cancer. The present study will utilize FFPE tumor samples collected from patients enrolled in the PETACC-8 study conducted by the Fédération Francophone de Cancérologie Digestive (FFCD). This phase 3 clinical trial prospectively randomized fully resected stage III colon cancer patients to receive adjuvant treatment with either FOLFOX-4 plus cetuximab or FLOFOX-4 alone.
Project description:We analyzed the expression profiles of hsa-miR-145-5p or hsa-miR-31-5p-targeting genes relating to invasion or migration after co-overexpression of hsa-miR-145-5p and 31-5p Gene expression profiles of U87 cells after co-transfection with hsa-miR-145-5p and 31-5p mimics, and U87 cells after transfection miR mimic negative control
Project description:Post-transcriptional regulation of gene expression by miRNAs likely makes significant contributions to mRNA abundance at the embryo-maternal interface. In this study, we investigated how miR-26a-5p and miR-125b-5p contribute to molecular changes occurring in the uterine luminal epithelium, which serves as the first site of signal exchange between the mother and developing embryo. To measure de novo protein synthesis after miRNA delivery to primary uterine luminal epithelial cells, we employed pulsed stable isotope labeling by amino acids (pSILAC). We found that both miRNAs alter the proteome of luminal epithelial cells, impacting numerous cellular functions, immune responses, as well as intracellular and second messenger signaling pathways. Additionally, we identified several features of miRNA-mRNA interactions that may influence the targeting efficiency of miR-26a-5p and miR-125b-5p. Overall, our study suggests a complex interaction of miR-26a-5p and miR-125b-5p with their respective targets. However, both appear to cooperatively function in modulating the cellular environment of the luminal epithelium, facilitating the morphological and molecular changes that occur during the intensive communication between the embryo and uterus at pregnancy.