Project description:Lignin is a universal waste product of the agricultural industry and is currently seen as a potential feedstock for more sustainable manufacturing. While it is the second most abundant biopolymer in the world, most of it is currently burned as it is a very recalcitrant material. Many recent studies, however, have demonstrated the viability of biocatalysis to improve the value of this feedstock and convert it into more useful chemicals, such as polyhydroxybutyrate, and clean fuels like hydrogen and n-butanol. Rhodopseudomonas palustris is a gram-negative bacterium which demonstrates a plethora of desirable metabolic capabilities, including aromatic catabolism useful for lignin degradation. This study uses a multi-omics approach, including the first usage of CRISPRi in R. palustris, to investigate the lignin consumption mechanisms of R. palustris, the essentiality of redox homeostasis to lignin consumption, elucidate a potential lignin catabolic superpathway, and enable more economically viable sustainable lignin valorization processes.
Project description:The Trametes versicolor genome is predicted to encode many enzymes that can effectively degrade lignin, making it a has potentially useful application intool for biopulping and biobleaching. Poplar is an important and widely cultivated species of tree species, which isand extensively applied used in the pulping industry. However, the wood degradation mechanism of T. versicolor from transcriptomic level is not clear. To reveal identify the enzymes that contributeing to lignocellulose degraredauction and its degradation mechanisms, we evaluated transcriptomic how study theof T. versicolor transcriptome was changes during evaluated growthing on the poplar wood relative to growth on glucose medium. 853 genes were differentially expressed;, 360 genes were up-regulated on poplar wood, and 493 genes were down-regulated on poplar wood. Notably, most genes relative involved into lignin degradation were up-regulated, including eight lignin peroxidase (LiP) genes, and two manganese peroxidase (MnP) genes etc. Genes encoding cellulose and hemicelluloses degrading-enzymesation were mostly down-regulated, including six endo-β-1, 4-glucanase genes, three cellobiohydrolase I genes, and one cellobiohydrolase II gene, etc. MeanwhileAdditionally, expression of more significant expansion of P450s in T. versicolor genome, along with differences in carbohydrate- and lignin-degrading enzymes, could bewere correlated withto poplar wood degradation. Our results revealed transcriptomic characterizeation transcriptomic changes related toof lignocellulose degradation. Therefore, our results cwould be benuseful for the development ofefit T. versicolor as a tool to improve the efficiency of lignin degradation, and provide a theoretical foundation for a new paper pulp manufacturing processe 1,T.versicolor groewn on PDA medium. 2, T. versicolor growing on the a glucose carbon medium of glucose. 3, T. versicolor growing on poplar medium
Project description:The aquatic midge, Chironomus tentans, is a keystone species in aquatic ecosystem and used as a model organism to assess chemicals toxicity in aquatic environment. To characterize midge’s cellular and molecular responses to pesticides, we established cDNA library with 10,000 cDNA elements representing 2,456 C. tentans unique genes. Blast2go identified 49 genes potentially involved in xenobiotics metabolism, including 24 cytochrome p450s (CYPs), 14 esterases (ESTs) and 11 glutathione-s-transferases (GSTs). Based on 2,456 unique genes, a cDNA microarray was developed to monitor gene expression profiles in 4th instar larvae under chlopyrifos (0.1 µg/L and 0.5 µg/L) and 1000 µg/L atrazine 48-hr exposure. We identified 149, 435 and 244 genes were significantly differentially expressed (p-value ≤0.05 with expression ratios ≥2.0) after 0.1 µg/L, 0.5 µg/L chlopyrifos, and 1000 µg/L atrazine application, respectively. Sixteen insect detoxification genes (11 CYPs, 3 GSTs and 2 esterases) were validated by qPCR and their expressions were significantly either up- or down-regulated under chlorpyrifos and atrazine exposure, especially the expression of 10 CYPs were significantly induced after chlopyrifos and atrazine exposure. The up-regulated CYPs might be involved in xenobiotic activation and/or degradation. Furthermore, we also found 5 differentially expressed hemoglobin genes. The expression changes of hemoglobins might be an adaption mechanism of C. tentans to hypoxic condition caused by xenobiotic exposure. This study provides a platform for further functional studies of pesticide-insect interactions in C. tentans.