Project description:RUVBL2 is most important AAA+ ATPase for RNA polymerase II assembly and transcription regulation, through DNA remodeling or by directly interaction with PIC,this study will comprehensively to study the promiscuous functions of this proteins through the ChIP-MS, ChIP-seq, RNA-seq and nascent RNA seq and biochemistry analysis. Our study would provide more systematic and novel responsibility of this molecule, especially for the development and carcinomas.
Project description:<p>Gene expression is a biological process regulated at different molecular levels, including chromatin accessibility, transcription, and RNA maturation and transport. In addition, these regulatory mechanisms have strong links with cellular metabolism. Here we present a multi-omics dataset that captures different aspects of this multi-layered process in yeast. We obtained RNA-seq, metabolomics, and H4K12Ac ChIP-seq data for wild-type and mip6delta strains during a heat-shock time course. Mip6 is an RNA-binding protein that contributes to RNA export during environmental stress and is informative of the contribution of post-transcriptional regulation to control cellular adaptations to environmental changes. The experiment was performed in quadruplicate, and the different omics measurements were obtained from the same biological samples, which facilitates the integration and analysis of data using covariance-based methods. We validate our dataset by showing that ChIP-seq, RNA-seq and metabolomics signals recapitulate existing knowledge about the response of ribosomal genes and the contribution of trehalose metabolism to heat stress.</p>
Project description:Determining the genomic localization of chromatin features is an essential aspect of investigating gene expression control, and ChIP-Seq has long been the gold standard technique for interrogating chromatin landscapes. Recently, the development of alternative methods, such as CUT&Tag, have provided researchers with alternative strategies that eliminate the need for chromatin purification, and allow for in situ investigation of histone modifications and chromatin bound factors. Mindful of technical differences, we set out to investigate whether distinct chromatin modifications were equally compatible with these different chromatin interrogation techniques. We found that ChIP-Seq and CUT&Tag performed similarly for modifications known to reside at gene regulatory regions, such as promoters and enhancers, but major differences were observed when we assessed enrichment over heterochromatin-associated loci. Unlike ChIP-Seq, CUT&Tag detects robust levels of H3K9me3 at a substantial number of repetitive elements, with especially high sensitivity over evolutionarily young retrotransposons. IAPEz-int elements for example, exhibited underrepresentation in mouse ChIP-Seq datasets but strong enrichment using CUT&Tag. Additionally, we identified several euchromatin-associated proteins that co-purify with repetitive loci and are similarly depleted when applying ChIP-based methods. This study reveals that our current knowledge of chromatin states across the heterochromatin portions of the mammalian genome is extensively incomplete, largely due to36 limitations of ChIP-Seq. We also demonstrate that newer in situ chromatin fragmentation-based techniques, such as CUT&Tag and CUT&RUN, are more suitable for studying chromatin modifications over repetitive elements and retrotransposons.
Project description:Estrogen Receptor alpha (ERα) is a key driver of most breast cancers, and it is the target of endocrine therapies used in the clinic to treat women with ERα positive (ER+) breast cancer. The two methods ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins) have greatly improved our understanding of ERα function during breast cancer progression and in response to anti-estrogens. A critical component of both ChIP-seq and RIME protocols is the antibody that is used to pull down the bait protein. To date, most of the ChIP-seq and RIME experiments for the study of ERα have been performed using the sc-543 antibody from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby severely impacting the study of ERα in normal physiology as well as diseases such as breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other commercially available antibodies, and we show that 06-935 (EMD Millipore) and ab3575 (Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME experiments.
Project description:Chromatin immunoprecipitation (ChIP) has been a cornerstone for epigenetic analyses over the last decades, but even coupled to sequencing approaches (ChIP-seq), it is ultimately limited to one protein at a time. In a complementary effort, we here combined ChIP with label-free quantitative (LFQ) mass spectrometry (ChIP-MS) to interrogate local chromatin compositions. We demonstrate the versality of our approach at telomeres, with transcription factors, in tissue and by dCas9-driven locus-specific enrichment.
Project description:Chromatin immunoprecipitation (ChIP) has been a cornerstone for epigenetic analyses over the last decades, but even coupled to sequencing approaches (ChIP-seq), it is ultimately limited to one protein at a time. In a complementary effort, we here combined ChIP with label-free quantitative (LFQ) mass spectrometry (ChIP-MS) to interrogate local chromatin compositions. We demonstrate the versality of our approach at telomeres, with transcription factors, in tissue and by dCas9-driven locus-specific enrichment.
Project description:We have examined the roles of yeast mRNA decapping-activators Pat1 and Dhh1 in repressing the translation and abundance of specific mRNAs in nutrient-replete cells using a combination of ribosome profiling, RNA-Seq, CAGE analysis of capped mRNAs, RNA Polymerase II ChIP-Seq, and TMT-mass spectrometry of mutants lacking one or both factors.
Project description:CHIP is a neuroprotective E3-ubiquitin ligase that supports longevity and healthy ageing. Loss of CHIP function has a major impact on life expectancy in animal models, whilst in humans’ mutations that compromise the E3-ligase activity of CHIP are causative for forms of Spinocerebellar Ataxia (SCA) that are accompanied by cognitive decline and/or dementia. The pathways regulated by CHIP to maintain neuronal health remain to be discovered. Gene-edited neuroblastoma cells were produced and used as a model to study the effects of CHIP loss on the steady state proteome in the absence of proteotoxic stress. Label free quantitative proteomic analysis (SWATH-MS) highlighted VGF, a member of the neuropeptide precursor family of proteins, as being a dominant protein responding to loss of CHIP function. By studying the dependence of VGF expression on CHIP using SILAC and RNA-Seq we have defined a role for the ligase in regulated neuropeptide expression.
Project description:Aging is a universal biological phenomenon linked to many diseases, such as cancer or neurodegeneration. However, the molecular mechanisms underlying aging, or how lifestyle interventions such as cognitive stimulation can ameliorate this process, are yet to be clarified. Here, we performed a multi-omic profiling, including RNA-seq, ATAC-seq, ChIP-seq, EM-seq, SWATH-MS and single cell Multiome scRNA and scATAC-seq, in the dorsal hippocampus of young and old mouse subjects which were subject to cognitive stimulation using the paradigm of environmental enrichment. In this study we were able to describe the epigenomic landscape of aging and cognitive stimulation.
Project description:The goal of this study was to explore in detail how the chromatin remodeler and NuRD subunit CHD4 controls the oncogenic signature of the tumor driver and fusion protein PAX3-FOXO1 in fusion-positive rhabdomyosarcoma. To this aim, we defined the interactome of CHD4 by LC-MS, identified its location in the genome by ChIP-seq, assessed its influence on DNA accessibility by DNase I hypersensitivity assays, and determined its target genes by RNA-seq.