Project description:Skin samples from wild type or HIRA knockout mouse embryos were dissociated to give cellular suspensions, then single cell RNA sequencing was performed using the 10X platform. Method: Cellular suspensions of skin cells from wild type and HIRA knockout mice were prepared, then sequencing was performed using the Chromium 10X system. Data were then processed using Cellranger version 2.2.0.
Project description:Skin samples from wild type or HIRA knockout mouse embryos were dissociated to give cellular suspensions, then single cell RNA sequencing was performed using the 10X platform. Method: Cellular suspensions of skin cells from wild type and HIRA knockout mice were prepared, then sequencing was performed using the Chromium 10X system. Data were then processed using Cellranger version 2.2.0.
Project description:This lineage tracing experiment focused on studying the transcriptome of cardiac myeloid cells derived from BM HSCs post-MI. We performed Left coronary artery ligation (LAD) in a tamoxifen-inducible in vivo HSC-lineage tracing mouse model which allows HSC-progeny lineage tracing via Tomato expression (Fgd5-CreERT2 tdTomato; PMID: 30561324). This was followed by a 2-day treatment with either vehicle (DMSO) or 4-oxo-RA. On day 3 post-MI, hearts were extracted, and tdTomato-positive and tdTomato-negative myeloid cells (CD11b+) were isolated from the myocardium. scRNA-seq was performed.
Project description:Plant development is characterised by the capacity to reprogram differentiated cells to initiate asexual reproduction and to produce new organs such as lateral roots. To test whether HIRA could be involved in aspects of developmental reprogramming we studied the effect of HIRA during de-differentiation Arabidopsis root tissue was digested with enzyme to generate protoplast. This process would induce plant cell dedifferentiation. Experiments were performed in WT and hira background to understand how hira affect plant dedifferentiation process.
Project description:The HIRA chaperone complex, comprised of HIRA, UBN1 and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand its function and mechanism, we integrated HIRA, UBN1, ASF1a and histone H3.3 ChIP-seq and gene expression analyses. Most HIRA-binding sites co-localize with UBN1, ASF1a and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and co-regulator composition at different classes of HIRA-bound regulatory site. Underscoring this, we report novel physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodelling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites. We used microarrays to detail the global programme of gene expression after knockdown of HIRA HeLa cells were nucleofacted with Dharmacon control siRNA and siRNA to HIRA and RNA was isolated 72 hours after transfection in four biological replicates
Project description:The HIRA chaperone complex, comprised of HIRA, UBN1 and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand its function and mechanism, we integrated HIRA, UBN1, ASF1a and histone H3.3 ChIP-seq and gene expression analyses. Most HIRA-binding sites co-localize with UBN1, ASF1a and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and co-regulator composition at different classes of HIRA-bound regulatory site. Underscoring this, we report novel physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodelling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites. We used microarrays to detail the global programme of gene expression after knockdown of HIRA
Project description:We performed lineage tracing experiments using VE-Cadherin-Cre;LoxP-tdTomato mice. In these mice, endothelial cells (ECs) and their progeny are permanently marked by tdTomato fluorescence. We found that a substantial subset of stromal cells is derived from ECs, as indicated by their tdTomato expression. These findings support the notion that endothelial to mesenchymal transition (EndoMT) contributes to hematopoietic bone marrow niche formation in mice. Here we sought to determine the transcriptomic differences between endothelial-derived (tdTomato-positive) and non-endothelial-derived (tdTomato-negative) bone marrow stromal cells (BMSCs) and osteo/chondrolineage progenitor cells (OLCs). Murine niche populations were obtained from collagenased bone fraction of VE-Cadherin-Cre;LoxP-tdTomato mice at 3 weeks (n=2) or 11 weeks (n=2) of age. BMSCs (CD45-TER119-CD31-CD144-SCA-1+ CD51+ cells) and OLCs (CD45-TER119-CD31-CD144-Sca1-CD51+ cells) were FACS-purified and sequenced.