Project description:We compared PPARg binding sites in BAT and eWAT to identify regulatory elements that contribute to BAT identity and to find an important factor that bind those elements. To this end, we performed PPARg ChIP-seq in both tissues and called each tissue-spsecific binding sites. PPARg ChIP-seq in BAT and eWAT of mice
Project description:To elucidate the sex-specific role of PGC1α in brown adipose tissue (BAT), we performed ATAC-seq analysis on BAT from male and female PGC1α knockout mice.
Project description:Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. We identified the transcription factor GATA6 as a selective marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. To gain insight into the mechanism by which GATA6 supports BAT development, we performed ChIP-seq for GATA6 from the BAT of embryonic day 15.5 embryos.
Project description:Thermogenesis is a promising approach to limit weight gain in response to excess nutrition. In contrast to cold-induced thermogenesis, the molecular and cellular mechanisms of diet-induced thermogenesis (DIT) have not been fully characterized. Here, we explored the response of brown adipose tissue (BAT) and beige adipose tissue to high fat diet (HFD) using proteome and phosphoproteome analysis. We observed that after HFD, DIT was only activated in BAT. Furthermore, fatty acid oxidation, tricarboxylic acid cycle, and oxidative phosphorylation were also activated in BAT. Nevertheless, most metabolic pathways downregulated in beige adipose tissue. Strikingly, we found that these metabolic changes accompanied with different variation of mitochondria between BAT and beige adipose tissue as well. HFD treatment impaired mitochondrial functions and mitochondrial protein synthesis in beige adipose tissue while it stimulated mitochondrial autophagy in BAT. Together, in BAT, HFD caused increased mitochondrial activity,
Project description:We report that monocytes contribute to the maintenance of BAT macrophages in a dynamic manner at steady state, and allow tissue remodelling during BAT expansion. Using scRNA-Seq, we explored monocyte and macrophage diversity in BAT at steady state and during BAT expansion.
Project description:Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared to white adipose tissue (WAT), PVAT and BAT from C57BL/6 mice fed a high fat diet for 13 weeks had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80, CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) in comparison to WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from thermal and inflammatory stress. 8-week-old male C57BL6/J mice were fed a normal (ND) or high fat diet (HFD) (Research Diets 12451, 45 kcal% fat) for 13 weeks. Mice were then euthanized and four different adipose depots were harvested for RNA analysis: perivascular fat from the lesser curvature of the aortic arch (PVAT), interscapular brown adipose (BAT), inguinal adipose tissue (SAT), and epididymal adipose tissue (VAT). 250 ng total RNA pooled from two mice was used for cDNA synthesis; 3 biological replicates per tissue and diet were performed for a total of 24 hybridizations.
Project description:We compared PPARg binding sites in BAT and eWAT to identify regulatory elements that contribute to BAT identity and to find an important factor that bind those elements. To this end, we performed PPARg ChIP-seq in both tissues and called each tissue-spsecific binding sites.
Project description:The activity of brown fat, a tissue mediating non-shivering thermogenesis, is associated with protection against obesity, diabetes, and cardiovascular disease. In response to thermogenic stimuli, brown adipose tissue (BAT) increases its activity through extensive cellular and tissue plasticity. While macroautophagy is typically inhibited during BAT thermogenic activation, we found that chaperone-mediated autophagy (CMA), a selective type of autophagy, is instead induced. CMA induction enhances both basal and cAMP-stimulated activity of brown adipocytes, as evidenced by increased expression of thermogenesis-related genes, enhanced release of brown adipokines, elevated cellular oxidative activity, and increased lipolysis. In aging, when BAT activity declines, LAMP2A—the limiting CMA component—is downregulated in BAT. However, pharmacological activation of CMA restores BAT activity in aged mice. To investigate the consequences of this CMA failure in BAT, we generated brown adipocytes knock down for LAMP2A and using comparative proteomics identified that CMA regulates levels of proteins involved in BAT thermogenic and metabolic activity. We demonstrate that selective CMA blockade in interscapular BAT in mice leads to reduced energy expenditure, increased triglyceridemia, lower expression of thermogenic markers and BAT-secretory functions, and to accumulation of thermogenesis repressors upon thermogenic activation. Overall, these findings support the essential role of CMA in BAT function and adaptation to thermogenic activation. CMA facilitates the timely degradation of thermogenic repressors, thereby promoting adaptive enhancement of thermogenic activity.
Project description:We performed a genome-wide deep sequencing analysis of the microRNAs abundant in mesenchymal stem cells (MSCs) derived from murine brown adipose tissue and in in vitro differentiated mature brown adipocytes. Several microRNAs were identified as differentially regulated when comparing datasets from MSCs vs. mature fat cells. These microRNAs may have an implication in the regulation of adipogenesis as well as thermogenesis in brown adipose tissue (BAT). Examination of BAT-derived MSCs (BAT-MSC; 1 sample) and in vitro differentiated mature brown fat cells (BAT-DIFF; 1 sample) vertis biotechnologie AG, D-85354 Freising, Germany (library construction and sequencing)