Project description:To identify novel miRNA and NAT-siRNAs that are associated with salt and cold stresses in Arabidopsis, we generated small RNA sequences from Arabidopsis plants under salt and cold stress treatments. Sequencing of small RNAs in Arabidopsis under salt, and cold stress conditions.
Project description:Soybean (Glycine max) and mung bean (Vigna radiata) are key legumes with global importance, but their mechanisms for coping with cold stress—a major challenge in agriculture—have not been thoroughly investigated, especially in a comparative study. This research aimed to fill this gap by examining how these two major legumes respond differently to cold stress and exploring the role of uniconazole, a potential stress mitigator. Our comprehensive approach involved transcriptomic and metabolomic analyses, revealing distinct responses between soybean and mung bean under cold stress conditions. Notably, uniconazole was found to significantly enhance cold tolerance in mung bean by upregulating genes associated with photosynthesis, while its impact on soybean was either negligible or adverse. To further understand the molecular interactions, we utilized advanced machine learning algorithms for protein structure prediction, focusing on photosynthetic pathways. This enabled us to identify LOC106780309 as a direct binding target for uniconazole, confirmed through isothermal titration calorimetry. This research establishes a new comparative approach to explore how soybean and mung bean adapt to cold stress, offers key insights to improve the hardiness of legumes against environmental challenges, and contributes to sustainable agricultural practices and food security.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in sorghum, we generated small RNA sequences from sorghum seedlings that grew under control and under dought, salt, and cold stress treatments. sequencing of small RNAs in sorghum under control, drought, salt, and cold stress conditions.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in maize, we generated small RNA sequences from maize seedlings that grew under control and under dought, salt, and cold stress treatments. Sequencing of small RNAs in maize under control, drought, salt, and cold stress conditions.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in Arabidopsis, we generated small RNA sequences from adult Arabidopsis plants under control and under dought, salt, and cold stress treatments. Over 23 million reads were generated. Sequencing of small RNAs in Arabidopsis under control, drought, salt, and cold stress conditions.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in rice, we generated small RNA sequences from inflorescences from rice under control and under dought, salt, and cold stress treatments. Over 30 million reads were generated. sequencing of small RNAs in rice under control, drought, salt, and cold stress conditions.
Project description:Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs) are key gene regulators in eukaryotes, playing critical roles in plant development and stress tolerance. Trans-acting siRNAs (ta-siRNAs), which are secondary siRNAs triggered by miRNAs, and siRNAs from natural antisense transcripts (nat-siRNAs) are two well-studied classes of endo-siRNAs. In order to understand sncRNAs’ roles in plant cold response and stress acclimation, we studied miRNAs and endo-siRNAs in Cassava (Manihot esculenta), a major source of food for the world populations in tropical regions. Combining Next-Generation sequencing and computational and experimental analyses, we profiled and characterized sncRNA species and mRNA genes from the plants that experienced severe and moderate cold stresses, that underwent further severe cold stress after cold acclimation at moderate stress, and that grew under the normal condition. We also included Castor bean (Ricinus communis) to understand conservation of sncRNAs. In addition to known miRNAs, we identified dozens of novel miRNAs as well as ta-siRNA-yielding and nat-siRNA-yielding loci in Cassava and Castor bean, respectively. Among the expressed sncRNAs, many sncRNAs were differentially expressed under cold stresses. Our study provided the results on gene regulation by sncRNAs in cold acclimation of Euphorbiaceous plants and the role of sncRNA-mediated pathways affected by cold stress and stress acclimation in Cassava.
Project description:The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNA) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 81 unique miRNA sequences from 30 families, and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing datasets and TaqMan qPCR results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, expressions of cold-stress responsive smRNAs integrated in the auxin-signaling pathway and their target genes were largely anticorrelated. We investigated tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway, and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.