Project description:This study analyzed the expression profiles of miRNAs in fifth instar larvae and pupae of the rice leaf folder (Cnaphalocrocis medinalis) using high-throughput sequencing technology. Furthermore, it predicted the target genes of significantly differentially expressed miRNAs and performed functional enrichment analysis.
Project description:The angle of rice leaf inclination is an important agronomic trait and closely related to the yield and architecture of crops. Through genetic screening, a rice gain-of-function mutant leaf inclination1, lc1, was identified . Phenotypic analysis confirmed the exaggerated leaf angels of lc1 due to the stimulated cell elongation at the collar.In this series, we compare the transcriptome of zhonghua11 and lc1 collar.
Project description:Elevated CO2 (eCO2) has an influence on developing leaf growth of rice (Oryza sativa cv. Nipponbare), specifically lower growth stage than P4 (plastochron number), resulting in decrease in leaf size compared with that in ambient CO2 (aCO2). Since several micro RNAs are associated with the regulation of plant leaf development, in order to clarify which micro RNAs are involved in the decrease of leaf blade size at eCO2, we carried out high-throughput small RNA sequencing analysis and compared the amount of identified miRNAs in developing rice leaf blade grown between aCO2 and eCO2 condition.
Project description:To elucidate the epigenetic regulation of salt-responsive genes helps to understand the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms function in regulating the salt-responsive genes in rice and other crops at a global level. In this study, we mainly focused on dynamic changes in transcriptome and histone marks between rice leaf and root tissues during salt treatment by using RNA-seq and ChIP-seq approaches. We demonstrated that the majority of salt-related differentially expressed genes (DEGs) display tissue-dependent changes. Similarly, tissue-dependent chromatin changes have been detected between leaf and root tissues during salt treatment. Most importantly, our study indicates that chromatin states with a combination of marks, rather than an individual mark, most likely play crucial roles in regulating differential expression of salt-responsive genes between leaf and root tissues. Especially, a special CS containing bivalent marks, H3K4me3 and H3K27me3 with a functional exclusion with each other, displays distinct functions in regulating expression of DEGs between leaf and root tissues, H3K27me3-related repressive mark mainly regulates expression of DEGs in root, but H3K4me3-releated active mark dominantly functions in regulation of down-regulated genes and possibly antagonize the repressive role of H3K27me3 in up-regulated genes in leaf. Thus, our findings indicate salt-responsive genes are differentially regulated at the chromatin level between the leaf and root tissues in rice, which provides new insights in the understanding of chromatin-based epigenetic mechanisms that confer salt tolerance in plants.
Project description:Overexpression of OsMYB103L leads to leaf rolling in transgenic rice plants. To explore the possible molecular mechanism of OsMYB103L’s effects on rice leaf development, we examined the expression profiles of OsMYB103L overexpression transgenic rice plants and wild type leaf blades using Digital Gene Expression (DGE) profiling analysis.
Project description:Purpose: The goal of this study is to identify small non-conding RNAs which are involved in rice resistance to Xoo. Methods: Rice leaves were inoculated with the Xoo strain PXO61 at the four-leaf to five-leaf stage by the leaf-clipping method. Control rice plants were inoculated with water (mock inoculation). And then, total RNA was extracted to be sequenced using Illumina GAIIx. Results: Using an optimized data analysis workflow to count the expression level of small ncRNA, we found several differentially expressed small ncRNA which may be participated in the interaction between rice and Xoo. Conclusions: Small ncRNA have be found to function in a variety of biological processes. Our study here has showed that several candidate miRNA or siRNA may play a significant role in rice immunity.
Project description:Xanthomonas oryzae pv. oryzae (Xoo) is a rice pathogen causing bacterial blight, which outbreaks in most rice cultivating countries and reduces yield up to 50% due to no effective pesticide. Urgent responses of Xoo upon the initial contacts with rice at infection site are essential for pathogenesis. We studied the time-resolved gene expression of both transcriptome and proteome in the pathogenicity-activated Xoo cells with an in vitro assay system. Genes related to cell mobility, inorganic ion transport and effectors are early response genes to help Xoo cells invade into damaged rice leaf tissues, obtain rare cofactors, and evade rice immune responses. Although the time-resolved gene expression pattern of Xoo is conserved in both mRNA and protein, there are varied time gaps in genes between the expression peaks of mRNA and protein, which implies there is an additional translational selection step of specific mRNAs for rapid translation. The expression pattern of genes from a polycistronic mRNA in the same gene cluster is strictly conserved. The time-resolved gene expression study of Xoo in both transcriptome and proteome provides a valuable information about the pathogenic responses of Xoo at the initial stage of Xoo-rice interaction.
Project description:Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological processes and key functional pathways in rice.
Project description:We identified a key regulator of the rice leaf angle and plant architecture, OsWRKY36, from a rice oswrky mutant library. OsWRKY36 is highly expressed in the leaf lamina joint and promotes cell growth and expansion in adaxial parenchyma cells, leading to a greater leaf angle.