Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.
Project description:This SuperSeries is composed of the following subset Series: GSE24983: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_WT-GC] GSE24984: Response of A549 cells treated with Aspergillus fumigatus [WT-GC_vs_PrtT-GC] GSE24985: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_PrtT-CF] Refer to individual Series
Project description:Aspergillus fumigatus is an important human pathogen and a leading fungal killer. This study aimed to determine the small RNA repertoire of A. fumigatus in conidia and mycelium grown for 24 or 48 hours in liquid culture.
Project description:Experimantal validation for the 5' and 3' ends of poly(A)-RNA in Aspergillus fumigatus is currently lacking. The dataset here was used a total RNA-Seq control for poly(A)-enriched RNAs of Aspergillus fumigatus in comparison with 5' and 3' End-Seq data.
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours
Project description:By searching for new drugs against fungal pathogens, we found that miltefosine is active against Aspergillus fumigatus clinical isolates. A library of transcription factors (TF) null mutants was then challenged with this drug and we discovered a novel TF that confers resistance to miltefonise, named here SmiA. By using ChIP-seq, we searched for SmiA targets upon miltefosine treatment.