Project description:Mango bacterial leaf spot, which is caused by Xanthomonas critis pv. mangiferaeindicae (Xcm), poses a great threat to the development of mango planting industry.This work is the first to study the changes in gene and protein expressions in mango during Xcm infection. Our findings will provide new ideas for MBLS resistance and valuable genetic resources for the breeding of MBLS-resistant mango.
Project description:In this study, we performed a comprehensive proteomic analysis of mango leaves inoculated with the leaf spot pathogen A. alternata. Down-regulated proteins during pathogen invasion and colonization were primarily associated with photosynthesis, the phenylpropanoid and flavonoid biosynthesis pathways, and phenylalanine metabolism. In contrast, significantly up-regulated proteins were involved in tyrosine metabolism and the MAPK signaling pathway, highlighting their critical role in host resistance to the leaf spot pathogen. These findings provide valuable data on protein expression changes, offering potential targets for developing novel management strategies to enhance control of leaf spot disease.
2025-05-07 | PXD060671 | Pride
Project description:SNP markers associated with resistance to leaf spot disease
| PRJNA433374 | ENA
Project description:Biological control of rose black spot disease
Project description:The Jinggang honey pomelo is recognized as one of the three major fruit industry brands in Jiangxi Province. However, the crop’s growth and yield have been significantly affected by the black spot disease caused by Diaporthe citri. Despite this impact, the defense mechanisms and underlying molecular responses of the Jinggang honey pomelo to the disease remain poorly understood.
Project description:Resistance to herbicides in weeds can be due to alteration(s) in the gene encoding the herbicide target site, or to herbicide degradation via a deviation in plant general metabolism. If target-site-based resistance is easy to study, the multigenic control of metabolism-based resistance renders it much more complex to study. Metabolism-based resistance to herbicides represents the major part of herbicide resistance in black-grass. Its most likely basis is an overexpression of genes encoding enzymes degrading herbicides. We thus seek to identify such overexpressed genes by comparing the transcriptomes of resistant and sensitive black-grass individuals belonging to an F2 line segregating for two resistance genes. Given there are no genomic tools developed for black-grass, this approach will use heterologous hybridisation onto a wheat Affymetrix microarray. Comparison using heterologous hybridisation onto a wheat whole-genome microarray of transcriptome of three pools of black-grass plants obtained 2h30 after herbicide spraying at field rate. The three pools correspond to: · Sensitive plants (killed by herbicide). · Moderately resistant plants (growth impaired by herbicide but plants still alive) · Resistant plants (growth unimpaired by herbicide) 6 arrays - wheat
Project description:An Integrated Transcriptomic and Metabolomic Analysis of Black Spot Disease in Jinggang Honey Pomelo Reveals Underlying Resistance Mechanisms
Project description:Resistance to herbicides in weeds can be due to alteration(s) in the gene encoding the herbicide target site, or to herbicide degradation via a deviation in plant general metabolism. If target-site-based resistance is easy to study, the multigenic control of metabolism-based resistance renders it much more complex to study. Metabolism-based resistance to herbicides represents the major part of herbicide resistance in black-grass. Its most likely basis is an overexpression of genes encoding enzymes degrading herbicides. We thus seek to identify such overexpressed genes by comparing the transcriptomes of resistant and sensitive black-grass individuals belonging to an F2 line segregating for two resistance genes. Given there are no genomic tools developed for black-grass, this approach will use heterologous hybridisation onto a wheat Affymetrix microarray. Comparison using heterologous hybridisation onto a wheat whole-genome microarray of transcriptome of three pools of black-grass plants obtained 2h30 after herbicide spraying at field rate. The three pools correspond to: · Sensitive plants (killed by herbicide). · Moderately resistant plants (growth impaired by herbicide but plants still alive) · Resistant plants (growth unimpaired by herbicide)
Project description:Apple leaf spot caused by the Alternaria alternata f. sp. mali (ALT1) fungus is one of the most devastating diseases of apple (Malus × domestica). We identified a hairpin RNA (hpRNA)-mediated small RNAs, MdhpRNA277, from apple (cv. ‘Golden Delicious’) that is induced by infection with ALT1. MdhpRNA277 produces mdm-siR277-1 and mdm-siR277-2, which target five R genes, MdRNL1, MdRNL2, MdRNL3, MdRNL4, and MdRNL5, that are expressed at high levels in the resistant apple variety ‘Hanfu’ and at low levels in the susceptible variety ‘Golden Delicious’ following ALT1 infection. MdhpRNA277 is strongly induced in ‘Golden Delicious’ but was not induced in ‘Hanfu’ following ALT1 inoculation. The promoter activity of MdhpRNA277 was much stronger in ‘Golden Delicious’ than in ‘Hanfu’ after ALT1 inoculation. We identified a single nucleotide polymorphism (SNP) in the MdhpRNA277 promoter region between the susceptible variety ‘Golden Delicious’ (pMdhpRNA277-GD) and resistant variety ‘Hanfu’ (pMdhpRNA277-HF). The transcription factor MdWHy binds to pMdhpRNA277-GD, but not to pMdhpRNA277-HF. Transgenic ‘GL-3’ apple lines expressing pMdhpRNA277-GD: MdhpRNA277 were more susceptible to ALT1 infection than were those expressing pMdhpRNA277-HF:MdhpRNA277 due to induced mdm-siR277 accumulation and low levels of expression of the five target R genes. The failure of MdWHy to bind to pMdhpRNA277-HF might contribute to the low levels of MdhpRNA277 and mdm-siR277-1/-2 expression and the high levels of R gene expression and resistance to Alternaria leaf spot in resistant apple varieties. We confirmed that the SNP in pMdhpRNA277 is associated with Alternaria leaf spot resistance by analyzing the progeny of three additional crosses. The SNP identified in this study could be used as a marker to distinguish between apple varieties that are resistant or susceptible to Alternaria leaf spot.
Project description:Biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanism of phytobacterial biofilm are still obscure. Here, we found that Ralstonia solanacearum Resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by governing systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm and specifically targets the Holliday junction (HJ) like structures to disrupt biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast localized HJ resolvase monokaryotic chloroplast 1 (MOC1) which is structural similar to bacterial RuvC shows a strong inhibit effect on bacterial biofilm formation. Re-localization of SlMOC1 to apoplast in tomato roots leads to increase resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacteria vascular disease.