Project description:Secondary hyperparathyroidism is well known complication manifested in end-stage renal disease (ESRD). Both nodular and diffuse parathyreoid hyperplasia occur in ESRD patients. Distinct molecular mechanisms involved in parathyreoid hyperplasia remain poorly understood. Microarray screening proved homogeneity of gene transcripts in hemodialysis patients as compared to transplant cohort and primary hyperparathyreoidism, therefore further studies were performed in hemodialysis patints only. Enrichment analysis conducted on 485 differentially expressed genes between nodular and diffuse parathyreoid hyperplasia revealed highly significant differences in GO terms and KEGG database in ribosome structure (p=3.70-18). Next, RT-qPCR validation of microarray analysis proved higher expression of RAN guanine nucleotide release factor (RANGRF, p<0.001), calcyclin binding protein (CACYBP, p<0.05) and exocyst complex component 8 (EXOC8, p<0.05) and lower expression of peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1, p<0.01) mRNA in nodular hyperplasia. Multivariate analysis revealed RANGRF and PIN1 expression along with parathyroid weight to be associated with nodular hyperplasia. Higher expression of genes associated with ribosomal structure and function underline extended translation mechanisms involved in parathyreoid nodular formation in long-term hemodialysis treated patients. Parathyroid tissue obtained from ESRD hyperparathyroidism patients who had undergone parathyroidectomy were used for transcriptome screening (Illumina HumanHT-12 v4.0 Expression BeadChips) and subsequently for discriminatory gene analysis, pathway mapping and gene-annotation enrichment analyses. Results were verified on enlarged group of hemodialysis patients with nodular (n=20) and diffuse (n=20) hyperplasia using RT-qPCR method.
Project description:Secondary hyperparathyroidism is well known complication manifested in end-stage renal disease (ESRD). Both nodular and diffuse parathyreoid hyperplasia occur in ESRD patients. Distinct molecular mechanisms involved in parathyreoid hyperplasia remain poorly understood. Microarray screening proved homogeneity of gene transcripts in hemodialysis patients as compared to transplant cohort and primary hyperparathyreoidism, therefore further studies were performed in hemodialysis patints only. Enrichment analysis conducted on 485 differentially expressed genes between nodular and diffuse parathyreoid hyperplasia revealed highly significant differences in GO terms and KEGG database in ribosome structure (p=3.70-18). Next, RT-qPCR validation of microarray analysis proved higher expression of RAN guanine nucleotide release factor (RANGRF, p<0.001), calcyclin binding protein (CACYBP, p<0.05) and exocyst complex component 8 (EXOC8, p<0.05) and lower expression of peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1, p<0.01) mRNA in nodular hyperplasia. Multivariate analysis revealed RANGRF and PIN1 expression along with parathyroid weight to be associated with nodular hyperplasia. Higher expression of genes associated with ribosomal structure and function underline extended translation mechanisms involved in parathyreoid nodular formation in long-term hemodialysis treated patients.
Project description:Mass spectrometry-based lipidomics datasets of cirrhotic liver tissue from patients with advanced steatotic liver disease (SLD; N=20) compared with background liver tissue (N=32) from patients with colorectal metastases to the liver (CRLM) or focal nodular hyperplasia (FNH). RAW datafiles were centroided and converted using MSConvert to mzXML format.
Project description:Hypothesis: Gene expression differences in biopsies from patients with inflammatory bowel disease can be used to identify molecular heterogeneity within patients with active disease. Methods: Patients with a diagnosis of Crohn's disease, ulcerative colitis or normal healthy controls (with or without infectious colitis) underwent ileocolonoscopy. In healthy controls, biopsies were taken in the sigmoid colon (n=21), ascending/descending colon (n=25) and the terminal ileum (n=12). In patients with Crohn's disease, biopsies were taken in the ascending/descending colon (n=107) and terminal ileum (n=70) in uninflamed areas in all patients; in patients with mucosal lesions, additional biopsies were taken in inflamed regions of the ascending/descending colon (n=35) and terminal ileum (n=55). In ulcerative colitis patients, paired uninflamed sigmoid (n=48) and inflamed sigmoid biopsies (n=46) were taken. Biopsies were placed in RNAlater at the clinical site, frozen and shipped to Genentech, where they were disrupted using TissueLyzer beads, then RNA was isolated using RNeasy columns. RNA was hybridized to Agilent human 4x44kv1 arrays, dual channel, using universal reference.
Project description:Shotgun metagenome sequencing of oral and stool samples from colorectal cancer patients before and after administration of antibiotic prophylaxis for surgery
Project description:Management of terminal ileal Crohn's disease (CD) is difficult due to fibrotic prognosis and failure to achieve mucosal healing. A limited number of synchronous analyses have been conducted on the transcriptome and microbiome in unpaired terminal ileum tissues. Therefore, our study focused on the transcriptome and mucosal microbiome in terminal ileal tissues of CD patients with the aim of determining the role of cross-talk between the microbiome and transcriptome in the pathogenesis of terminal ileal CD. Mucosa-attached microbial communities were significantly associated with segmental inflammation status. Interaction-related transcription factors (TFs) are the panel nodes for crosstalk between the gene patterns and microbiome for terminal ileal CD. The transcriptome and microbiome in terminal ileal CD can be different related to local inflammatory status, and specific differentially expressed genes (DEGs) may be targeted for mucosal healing. TFs connect gene patterns with the microbiome by reflecting environmental stimuli and signals from microbiota.