Project description:In order to assess the descendants of hypertrophic chondrocytes, we utilized Collagen10-Cre;Rosa26-tdTomato mouse total bone isolated at e16.5 by Collagenase II digestion after mechanical digestion and soft tissue removal. After sequencing and downstream analysis using Seurat, we observed clusters of cells with gene profiles matching classically defined chondrocytes, skeletal stem and progenitor cells (SSPCs), and osteoblasts. Trajectory analysis reveals that the SSPCs lie intermediate to the transition of chondrocyte to osteoblast. We conclude that hypertrophic chondrocytes dedifferentiate to this progenitor stage before further differentiation.
Project description:In order to assess the descendants of hypertrophic chondrocytes, we utilized Collagen10-Cre;Rosa26-tdTomato mouse bone marrow harvested at 2 months of age by centrifugation and light Collagenase II digestion. After sequencing and downstream analysis using Seurat, we observed clusters of cells with gene profiles matching classically defined skeletal stem and progenitor cells as well as CXCL12 abundant reticular (CAR) cells. These cells appear to be upstream of both osteoblasts and adipocytes. We conclude that hypertrophic chondrocytes dedifferentiate to this progentior stage before further differentiation.
Project description:In order to assess the descendants of lateral plate mesoderm within the muscle interstitium, we utilized Prrx1Cre;Rosa26-tdTomato P21 tdTomato+ FACS sorted muscle interstitial cells
Project description:To investigate the effects of Dnmt1 Knockout in Sst expressing interneurons on celltype distribution in the embryonic brain, Sst-Cre/tdTomato/Dnmt1 loxp2 knockout mice and Sst-Cre/tdTomato control mice were analysed. 10 µm coronal sections of E16.5 brains were prepared for the Merscope platform using the commercially available Pan Neuro panel (Vizgen), covering 500 distinct transcripts.
Project description:Mesp1-Cre+ cells from E7.5 mouse embryos (from the cross Mesp1-Cre/+ x Rosa26-Gli3R-IRES-YFP/tdTomato) were sorted by FACS where wild type (tdTomato-expressing) and mutant (Gli3R + YFP co-expressing) cells were collected separately from single litters.
Project description:We performed lineage tracing experiments using VE-Cadherin-Cre;LoxP-tdTomato mice. In these mice, endothelial cells (ECs) and their progeny are permanently marked by tdTomato fluorescence. We found that a substantial subset of stromal cells is derived from ECs, as indicated by their tdTomato expression. These findings support the notion that endothelial to mesenchymal transition (EndoMT) contributes to hematopoietic bone marrow niche formation in mice. Here we sought to determine the transcriptomic differences between endothelial-derived (tdTomato-positive) and non-endothelial-derived (tdTomato-negative) bone marrow stromal cells (BMSCs) and osteo/chondrolineage progenitor cells (OLCs). Murine niche populations were obtained from collagenased bone fraction of VE-Cadherin-Cre;LoxP-tdTomato mice at 3 weeks (n=2) or 11 weeks (n=2) of age. BMSCs (CD45-TER119-CD31-CD144-SCA-1+ CD51+ cells) and OLCs (CD45-TER119-CD31-CD144-Sca1-CD51+ cells) were FACS-purified and sequenced.