Project description:Whole transcriptome analysis of in vitro TFH versus naïve CD4 T cells, tonsillar TFH (CXCR5hiPD1hiCD25-TNFR2-) and TFR (CXCR5hiPD1+CD25hiTNFR2+) We used microarray analysis to compare naïve CD4 T cells to in vitro differentiated TFH, which we then compared to ex vivo Tonsillar TFH and TFR.
Project description:Functionally distinct CD4+ helper T (Th) cell subsets, such as Th1, Th2, Th17, and regulatory T cells (Treg), play a pivotal role in the host-defense against pathogen invasion and the pathogenesis of inflammatory disorders. In this project, DIA-MS-based proteome analysis was performed on naïve CD4+ T, Th0, Th1, Th2, Th17 and iTreg cells using Q Exactive HF-X (Thermo Fisher Scientific) to search for proteins that differ among the cell subsets.
Project description:Type 1 regulatory T (Tr1) cells are one of the regulatory T cell subsets that are characterized by the production of high amount of IL-10 and lack of FOXP3 expression. Lymphocyte-activation gene 3 (LAG3) is a CD4 homologue molecule and we have previously reported that LAG3 is expressed on IL-10 producing regulatory T cells. However, naturally occurring Tr1 cells in human secondary lymphoid tissue have not been detected. We identified CD4+CD25-LAG3+ T cells in human tonsil. We compared mRNA expression of five CD4+ T cell subsets in tonsil using microarray analysis (CD4+CD25-LAG3+ T cells, CD4+CD25-CXCR5+PD-1+ follicular helper T cells (TFH), CD4+CD25+ T cells, CD4+CD25-LAG3-CD45RO+ cells and CD4+CD25-LAG3-CD45RO- cells). A human tonsil was obtained from a patient undergoing routine tonsillectomy, and five tonsillar CD4+ T cell subsets were sorted (each 1 x 10^5 cells). There is no biological replication.
Project description:Type 1 regulatory T (Tr1) cells are one of the regulatory T cell subsets that are characterized by the production of high amount of IL-10 and lack of FOXP3 expression. Lymphocyte-activation gene 3 (LAG3) is a CD4 homologue molecule and we have previously reported that LAG3 is expressed on IL-10 producing regulatory T cells. However, naturally occurring Tr1 cells in human secondary lymphoid tissue have not been detected. We identified CD4+CD25-LAG3+ T cells in human tonsil. We compared mRNA expression of five CD4+ T cell subsets in tonsil using microarray analysis (CD4+CD25-LAG3+ T cells, CD4+CD25-CXCR5+PD-1+ follicular helper T cells (TFH), CD4+CD25+ T cells, CD4+CD25-LAG3-CD45RO+ cells and CD4+CD25-LAG3-CD45RO- cells).
Project description:Innate lymphoid cell (ILC) subsets that mirror helper T cells in their effector cytokine profiles have recently emerged as central players in both homeostatic and inflammatory conditions. Like their Th1, Th2 and Th17/Th22 helper T cell counterparts, ILC subsets are categorized based on their expression of specific transcription factors and effector cytokines: group 1 ILC (ILC1) express T-bet and IFN-γ; group 2 ILC (ILC2) express GATA-3 and type 2 effector cytokines such as IL-13 and IL-5; and group 3 ILC (ILC3) express RORgt and the cytokines IL-22 and/or IL-17. Under this nomenclature, natural killer (NK) cells and lymphoid tissue inducers (LTi) are considered ILC1 and ILC3, respectively. ILC1 contain both CD4+ and CD4- populations, but whether this phenotypic characteristic reflects functional differences between these two populations is unknown. These studies examine the gene expression profiles of CD4+ vs CD4- ILC1 in a cohort of healthy control subjects. ILC subsets were isolated from the peripheral blood of healthy control subjects. cDNA was isolated and amplified from sorted populations, and gene expression was analyzed by RNAseq
Project description:Differentiation of CD4+T-cells into effector subsets is a critical component of the adaptive immune system and an incorrect response can lead to autoimmunity or immune deficiency. Cellular differentiation including T-cell differentiation is accompanied by large-scale epigenetic remodeling, including changes in DNA methylation at key regulators of T-cell differentiation. The TET family of enzymes were recently shown to be able to catalyse methylated cytosine (5mC) into 5-hydroxymethylcytosine (5hmC) enabling a pathway of active removal of DNA methylation. Here, we characterize 5hmC, 5mC and transcriptional dynamics during human CD4+T-cell polarisation in a time series approach and relate these changes to profiles in ex-vivo CD4+memory subsets. We observed large-scale remodelling during early CD4+T-cell differentiation which was predictive of subsequent changes during late time points, these changes were also related to disease associated regions which we show can act as functional regulatory elements. This dataset was designed to assess how DNA methylation differs between in-vivo derived CD4+memory T-cell subsets. DNA methylation was assessed in relationship to gene expression levels and changes (see data series), we observed anticorrelation between promoter DNA methylation levels and gene expression. This submission contains data from DNA methylation profiling of primary human CD4+T-cell memory subsets. This is part of a series, containing transcription and DNA methylation profiling of the same samples. See related experiments E-MTAB-4685, E-MTAB-4686, E-MTAB-4687, E-MTAB-4688
Project description:Host defense against diverse pathogens involves the recruitment and differentiation of CD4+ T effector subsets including T helper 1 (Th1), Th2, Th17 and induced regulatory T (Treg) cells. Surface phenotype studies have revealed subset-specific surface markers for the identification and purification of human primary CD4+ T effector subsets. In the present study, we aimed to characterize the mRNA and large intergenic non-coding RNA (lincRNA) expression differences between human primary CD4+ T effector subsets and identify potential subset-specific genes. To achieve this goal, mRNA and lincRNA microarray profiling of flow cytometry-sorted human primary Th1, Th2, Th17 and Treg cells was performed. Principal component and pathway analyses revealed subset-specific gene expression patterns. A Th2-specific lincRNA, GATA3-AS1, also termed FLJ45983, was identified in primary immune cells and tissues, as well as in in vitro polarized CD4+ T effector subsets. Further analysis showed that GATA3-AS1 was a potential diagnostic marker in allergy, a Th2-associated disease. This first systematic genome-wide analysis of gene expression differences between primary CD4+ T effector subsets may help to identify novel regulatory protein-coding genes and lincRNAs regulating CD4+ T cell subset differentiation, as well as potential diagnostic markers. As an example, we identified a GATA3-associated Th2-specific marker lincRNA GATA3-AS1. Gene expression microarray analysis of flow-cytometry sorted human primary naïve CD4+ T cells, CD4+ T central memory cells, Th1, Th2, Th17 and Treg cells from buffy coat of four healthy controls Gene expression microarray analysis was performed using SurePrint G3 Human Gene Expression 8X60K microarray.