Project description:Epitranscriptomic profiling of human LECs of DC patients comparing normal control LECs. Goal was todetermine the potential functions and mechanism of N6-methyladenosine (m6A) abnormality of RNAs in human lens epithelium cell (HLEC) lesions in diabetic cataract (DC).
Project description:To characterize the N6-methyladenosine (m6A) modification patterns in long non-coding RNAs (lncRNAs) in sporadic congenital cataract (CC) and age-related cataract(ARC).
Project description:To explore the involvement of N6-methyladenosine (m6A) modification in circular RNAs (circRNAs) and relevant methyltransferases in the lesion of lens epithelium cells (LECs) under the circumstances of age-related cataract (ARC).
Project description:BackgroundCataracts remain a prime reason for visual disturbance and blindness all over the world, despite the capacity for successful surgical replacement with artificial lenses. Diabetic cataract (DC), a metabolic complication, usually occurs at an earlier age and progresses faster than age-related cataracts. Evidence has linked N6-methyladenosine (m6A) to DC progression. However, there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.AimTo elucidate the role played by altered m6A and differentially expressed mRNAs (DEmRNAs) in DC.MethodsAnterior lens capsules were collected from the control subjects and patients with DC. M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs. Through Gene Ontology and pathway enrichment (Kyoto Encyclopedia of Genes and Genomes) analyses, the potential role played by dysregulated m6A modification was predicted. Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases, demethylases, and readers.ResultsIncreased m6A abundance levels were found in the total mRNA of DC samples. Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs. The levels of five methylation-related genes-RBM15, WTAP, ALKBH5, FTO, and YTHDF1-were upregulated in DC samples. Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.ConclusionM6a mRNA modifications may be involved in DC progression via the ferroptosis pathway, rendering novel insights into therapeutic strategies for DC.
Project description:Hypoxia as a crucial pathogenesis factor usually results in huge harmful effects on cardiac injury and dysfunction. In our previous study (PMID: 33294289), We observe a series of differential expressed genes between transcription and translation, which may be attributed to the hypoxia-specific binding affinity of Nuclear cap-binding subunit 3 (NCBP3) at 5’ un-translation region of target genes. But the underlying molecular mechanism of NCBP3 for gene translation modulation remains unclear. Here, we conducted RIP-seq of N6-Methyladenosine methylation in H9C2 cells with the conditions of normoxic, hypoxic and with additional NCBP3 knockdown.
Project description:N6-methyladenosine (m6A) is the most abundant internal messenger (mRNA) modification in mammalian mRNA. This modification is reversible and non-stoichiometric, which potentially adds an additional layer of variety and dynamic control of mRNA metabolism. The m6A-modified mRNA can be selectively recognized by the YTH family “reader” proteins. The preferential binding of m6A-containing mRNA by YTHDF2 is known to reduce the stability of the target transcripts; however, the exact effects of m6A on translation has yet to be elucidated. Here we show that another m6A reader protein, YTHDF1, promotes ribosome loading of its target transcripts. YTHDF1 forms a complex with translation initiation factors to elevate the translation efficiency of its bound mRNA. In a unified mechanism of translation control through m6A, the YTHDF2-mediated decay controls the lifetime of target transcripts; whereas, the YTHDF1-based translation promotion increases the translation efficiency to ensure effective protein production from relatively short-lived transcripts that are marked by m6A. PAR-CLIP and RIP was used to identify YTHDF1 binding sites followed by ribosome profling and RNA seq to assess the consequences of YTHDF1 siRNA knock-down
Project description:Oxaliplatin as a first-line drug frequently causes the chemo-resistance on colorectal cancer (CRC). N6-methyladenosine (m6A) methylation has been largely acknowledged in multiple biological functions. However, the molecular mechanisms underlying the m6A methylation in modulating anticancer drug resistance in CRC are still obscure. In present study, RIP-seq was conducted to investigate the occupancy of N6-methyladenosine RNA binding protein 3 (YTHDF3) served as “readers” that can recognize m6A modification site in HCT116 cells with oxaliplatin resistance (HCT116R). Then, YTHDF3 was knockdown by siRNA in HCT116 cells with oxaliplatin resistance, and RIP-seq was further conducted to investigate m6A methylation of HCT116, HCT116R and HCT116R cells with YTHDF3 knockdown.
Project description:We show that N6-methyladenosine (m6A), the most abundant internal modification in mRNA/lncRNA with still poorly characterized function, alters RNA structure to facilitate the access of RBM for heterogeneous nuclear ribonucleoprotein C (hnRNP C). We term this mechanism m6A-switch. Through combining PAR-CLIP with Me-RIP, we identify 39,060 m6A-switches among hnRNP C binding sites transcriptome-wide. We show that m6A-methyltransferases METTL3 or METTL14 knockdown decreases hnRNP C binding at 16,582 m6A-switches. Taken together, 2,798 m6A-switches of high confidence are identified to mediate RNA-hnRNP C interactions and affect diverse biological processes including cell cycle regulation. These findings reveal the biological importance of m6A and provide insights into the sophisticated regulation of RNA-RBP interactions through m6A-induced RNA structural remodeling. Measure the m6A methylated hnRNP C binding sites transcriptome-wide by PARCLIP-MeRIP; measure the differential hnRNP C occupancies upon METTL3/METTL14 knockdown by PAR-CLIP; measure RNA abundance and splicing level changes upon HNRNPC, METTL3 and METTL14 knockdown