Project description:Muscle spindles are skeletal muscle stretch receptors that mediate axial and limb position sensation (proprioception) to the central nervous system. Defective proprioception, often characterized by gait ataxia and poor coordination, is present in a variety of human sensory and motor neuropathies having diverse etiologies. Spindles contain specialized intrafusal muscle fibers that are induced during development by sensory innervation. The molecular events mediating the morphogenetic induction process are poorly characterized but depend upon neuregulins and their cognate ErbB receptor signaling. Recently, we demonstrated that the transcription factor Egr3 is induced and regulated by intrafusal muscle fiber sensory innervation during spindle induction. Moreover, Egr3-deficient mice have impaired spindle morphogenesis and profound gait ataxia. Thus, Egr3 mediated transcription is critical for muscle stretch receptor development and potentially for myotube fate specification. Egr3 may mediate spindle morphogenesis induced by Neuregulin/ErbB signaling after myotubes are contacted by sensory axons during development. As a starting point for understanding the specific role for Egr3 in this process, we will use a genome wide expression analysis to identify genes regulated (either directly or indirectly) by Egr3 in primary myotubes. It is not practical to examine Egr3 mediated gene expression directly within spindles since they comprise less than 0.1% of the muscle mass. Therefore, gene expression analysis will be examined in primary myotubes grown in vitro. Primary myoblasts isolated from mice and differentiated in vitro are biochemically most similar to extrafusal muscle fibers which do not express Egr3. To identify genes regulated by Egr3 in myotubes, gene expression in myotubes enforced to express full length Egr3 will be compared to gene expression in myotubes enforced to express truncated (transcriptionally inactive) Egr3. Egr3-deficient mice lack muscle spindles and have profound proprioceptive deficits. Egr3 is specifically expressed in a subset of developing primary myotubes after innervation by sensory axons. Spindle induction is dependent upon sensory/myotube contact which involves sensory axon produced neuregulin and ErbB receptor signaling in the myotube. Shortly after or during induction, Egr3 expression is upregulated and maintained in the nascent myotube/spindle as one of the earliest molecular events know to occur during spindle morphogenesis. We hypothesize that Egr3 mediated transcription is critical for engaging gene programs specific to and essential for, muscle spindle formation. Moreover, Egr3 may be involved in fate specification of myotubes that develop into biochemically and physiologically distinct intrafusal muscle fibers within spindles. To date, the target genes regulated by Egr3 during spindle morphogenesis have not been characterized. Myoblasts from wild type newborn mice will be isolated and purified. Myoblasts will be plated on collagen coated plates and differentiated in vitro for 7 days. During in vitro differentiation, myoblasts fuse to form multinucleated myotubes that exhibit contractile properties. Egr3 is not expressed in myotubes in vitro, which is consistent with their similarity to extrafusal muscle fibers that also do not express Egr3 in vivo. Only intrafusal fibers of muscle spindles express high levels of Egr3 in this muscle fiber context. Adenoviruses that express full length Egr3 (Egr3wt; transcriptionally active) and truncated Egr3 (Egr3tr; transcriptionally inactive) have been generated and characterized in our laboratory. After 7 days of in vitro differentiation, primary myotubes will be infected with either Egr3wt or Egr3tr adenoviruses. 100% infection is routinely obtained which is confirmed by coexpression of enhanced green fluorescent protein (EGFP). Care will be taken to minimize viral induced toxicity of the myotubes after infection. Myotubes are maintained after infection for 24 hours, after which total RNA is extracted from the cell lysates. The two RNA samples will be used for microarray analysis to identify genes that are upregulated and downregulated by Egr3 in the myotube cellular context. We will repeat the infection, RNA isolation and microarray analysis three times to minimize identifying false positive differentially expressed genes. Differentially expressed genes will be confirmed using real-time PCR. Interesting differentially expressed genes will be examined by in situ hybridization to determine if they are specifically expressed in wild type spindles. Since the identified differentially expressed genes will represent both indirect and direct target genes, we will perform Chromatin Immunoprecipitation (ChIP) from Egr3wt infected myotubes and screen the ChIP DNA library by PCR to determine which gene promoters are directly bound by Egr3. Keywords: other
Project description:Muscle spindles are skeletal muscle stretch receptors that mediate axial and limb position sensation (proprioception) to the central nervous system. Defective proprioception, often characterized by gait ataxia and poor coordination, is present in a variety of human sensory and motor neuropathies having diverse etiologies. Spindles contain specialized intrafusal muscle fibers that are induced during development by sensory innervation. The molecular events mediating the morphogenetic induction process are poorly characterized but depend upon neuregulins and their cognate ErbB receptor signaling. Recently, we demonstrated that the transcription factor Egr3 is induced and regulated by intrafusal muscle fiber sensory innervation during spindle induction. Moreover, Egr3-deficient mice have impaired spindle morphogenesis and profound gait ataxia. Thus, Egr3 mediated transcription is critical for muscle stretch receptor development and potentially for myotube fate specification.,Egr3 may mediate spindle morphogenesis induced by Neuregulin/ErbB signaling after myotubes are contacted by sensory axons during development. As a starting point for understanding the specific role for Egr3 in this process, we will use a genome wide expression analysis to identify genes regulated (either directly or indirectly) by Egr3 in primary myotubes. It is not practical to examine Egr3 mediated gene expression directly within spindles since they comprise less than 0.1% of the muscle mass. Therefore, gene expression analysis will be examined in primary myotubes grown in vitro. Primary myoblasts isolated from mice and differentiated in vitro are biochemically most similar to extrafusal muscle fibers which do not express Egr3. To identify genes regulated by Egr3 in myotubes, gene expression in myotubes enforced to express full length Egr3 will be compared to gene expression in myotubes enforced to express truncated (transcriptionally inactive) Egr3.,Egr3-deficient mice lack muscle spindles and have profound proprioceptive deficits. Egr3 is specifically expressed in a subset of developing primary myotubes after innervation by sensory axons. Spindle induction is dependent upon sensory/myotube contact which involves sensory axon produced neuregulin and ErbB receptor signaling in the myotube. Shortly after or during induction, Egr3 expression is upregulated and maintained in the nascent myotube/spindle as one of the earliest molecular events know to occur during spindle morphogenesis. We hypothesize that Egr3 mediated transcription is critical for engaging gene programs specific to and essential for, muscle spindle formation. Moreover, Egr3 may be involved in fate specification of myotubes that develop into biochemically and physiologically distinct intrafusal muscle fibers within spindles. To date, the target genes regulated by Egr3 during spindle morphogenesis have not been characterized.,Myoblasts from wild type newborn mice will be isolated and purified. Myoblasts will be plated on collagen coated plates and differentiated in vitro for 7 days. During in vitro differentiation, myoblasts fuse to form multinucleated myotubes that exhibit contractile properties. Egr3 is not expressed in myotubes in vitro, which is consistent with their similarity to extrafusal muscle fibers that also do not express Egr3 in vivo. Only intrafusal fibers of muscle spindles express high levels of Egr3 in this muscle fiber context. Adenoviruses that express full length Egr3 (Egr3wt; transcriptionally active) and truncated Egr3 (Egr3tr; transcriptionally inactive) have been generated and characterized in our laboratory. After 7 days of in vitro differentiation, primary myotubes will be infected with either Egr3wt or Egr3tr adenoviruses. 100% infection is routinely obtained which is confirmed by coexpression of enhanced green fluorescent protein (EGFP). Care will be taken to minimize viral induced toxicity of the myotubes after infection. Myotubes are maintained after infection for 24 hours, after which total RNA is extracted from the cell lysates. The two RNA samples will be used for microarray analysis to identify genes that are upregulated and downregulated by Egr3 in the myotube cellular context. We will repeat the infection, RNA isolation and microarray analysis three times to minimize identifying false positive differentially expressed genes. Differentially expressed genes will be confirmed using real-time PCR. Interesting differentially expressed genes will be examined by in situ hybridization to determine if they are specifically expressed in wild type spindles. Since the identified differentially expressed genes will represent both indirect and direct target genes, we will perform Chromatin Immunoprecipitation (ChIP) from Egr3wt infected myotubes and screen the ChIP DNA library by PCR to determine which gene promoters are directly bound by Egr3.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:Here we report the expansion of the genetic code of Mus musculus with various unnatural amino acids including Nɛ-acetyl-lysine. Stable integration of transgenes encoding an engineered Nɛ-acetyl-lysyl-tRNA synthetase (AcKRS)/tRNAPyl pair into the mouse genome enables site-specific incorporation of unnatural amino acids into a target protein in response to the amber codon. We demonstrate temporal and spatial control of protein acetylation in various organs of the transgenic mouse using a recombinant green fluorescent protein (GFPuv) as a model protein. This strategy will provide a powerful tool for systematic in vivo study of cellular proteins in the most commonly used mammalian model organism for human physiology and disease.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.